Análisis del papel del microbioma en el desarrollo de enfermedades alérgicas respiratorias

dc.contributor.advisorAnaya Chavez, Yosed
dc.contributor.authorBoom Aguirre, Valeria Valentina
dc.coverage.spatialBarranquillaspa
dc.creator.emailvaleriav-booma@unilibre.edu.cospa
dc.date.accessioned2025-03-28T21:05:27Z
dc.date.available2025-03-28T21:05:27Z
dc.date.created2025-02-06
dc.description.abstractLas alergias son un grupo de enfermedades muy comunes que impactan las vías respiratorias, la piel, el sistema gastrointestinal o múltiples sistemas al mismo tiempo. En ciertos casos, pueden representar un riesgo mortal para los pacientes, como ocurre con el asma severa y la anafilaxia provocada por picaduras de insectos. Estas condiciones implican un considerable costo para la salud de quienes las padecen, así como un impacto económico y social relevante para sus familias y el sistema de salud. El objetivo de estudio fue analizar el rol del microbioma en el continuo desarrollo de enfermedades alérgicas respiratorias en la población infantil, donde se encontró que, los complejos microbiomas intestinal y respiratorio están implicados de forma central en la ontogenia del sistema inmune, especialmente durante etapas críticas del desarrollo neonatal y la primera infancia. La disbiosis temprana de estas comunidades microbianas endógenas se ha correlacionado consistentemente con un aumento en la susceptibilidad a desarrollar trastornos alérgicos y asma más adelante en la vida. La evidencia actual propone un papel central del microbioma en la patogénesis de las enfermedades alérgicas respiratorias, que podría ser manipulado para desarrollar aproximaciones terapéuticas novedosas para estas condiciones. No obstante, aún faltan estudios definitivos que esclarezcan los mecanismos subyacentes con mayor precisión.spa
dc.description.abstractenglishAllergies are a group of very common diseases that impact the respiratory tract, skin, gastrointestinal system or multiple systems at the same time. In certain cases, they can be life-threatening for patients, as is the case with severe asthma and anaphylaxis caused by insect stings. These conditions imply a considerable cost for the health of those who suffer from them, as well as a relevant economic and social impact for their families and the health system. The aim of the study was to analyze the role of the microbiome in the continuous development of respiratory allergic diseases in the pediatric population, where it was found that the complex intestinal and respiratory microbiome complexes are centrally involved in the ontogeny of the immune system, especially during critical stages of neonatal development and early childhood. Early dysbiosis of these endogenous microbial communities has been consistently correlated with increased susceptibility to develop allergic disorders and asthma later in life. Current evidence proposes a central role of the microbiome in the pathogenesis of respiratory allergic diseases, which could be manipulated to develop novel therapeutic approaches for these conditions. However, definitive studies that elucidate the underlying mechanisms with greater precision are still lacking.spa
dc.description.sponsorshipUniversidad Libre Seccional Barranquilla -- Facultad de Ciencias de la Salud, Exactas y Naturales -- Programa de Microbiologíaspa
dc.formatPDFspa
dc.identifier.urihttps://hdl.handle.net/10901/30888
dc.relation.referencesDodi G, Atanasi M, Di Filippo P, Di Pillo S, Chiarelli F. Virome in the Lungs: The Role of Anelloviruses in Childhood Respiratory Diseases. Microorganisms [Internet]. 2021 Jun 23 [cited 2023 Aug 25];9(7). Available from: http://www.ncbi.nlm.nih.gov/pubmed/34201449spa
dc.relation.referencesWang J, Zeng S, Yang X, Huazeng B, Cheng Q. Influences of non-IgE-mediated cow’s milk protein allergy-associated gut microbial dysbiosis on regulatory T cell-mediated intestinal immune tolerance and homeostasis. Microb Pathog. 2021 Sep 1;158:105020spa
dc.relation.referencesCukrowka B, Bierła JB, Zakrzewska M, Klukowski M, Maciorkowska E. The relationship between the infant gut microbiota and allergy. The role of Bifidobacterium breve and prebiotic oligosaccharides in the activation of anti-allergic mechanisms in early life. Vol. 12, Nutrients. MDPI AG; 2020spa
dc.relation.referencesGensolen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Vol. 352, Science. American Association for the Advancement of Science; 2016. p. 539–44spa
dc.relation.referencesSawiki GS, Vilk Y, Schatz M, Kleinman K, Abrams A, Madden J. Uncontrolled asthma in a commercially insured population from 2002 to 2007: trends, predictors, and costs. J Asthma [Internet]. 2010 Jun [cited 2023 Apr 21];47(5):574–80. Available from: https://pubmed.ncbi.nlm.nih.gov/20560831/spa
dc.relation.referencesAzad MB, Konya T, Maughan H, Guttman DS, Field CJ, Sears MR, et al. Infant gut microbiota and the hygiene hypothesis of allergic disease: impact of household pets and siblings on microbiota composition and diversity [Internet]. 2013. Available from: http://metastats.cbcb.umd.eduspa
dc.relation.referencesTortajada MI, Guerola JVS. Efecto de la lactancia materna en la calidad de vida y en el desarrollo de la dermatitis atópica. Pediatría Atención Primaria [Internet]. 2015 [cited 2023 Apr 21];17(66):115–24. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1139 76322015000300003&lng=es&nrm=iso&tlng=esspa
dc.relation.referencesKang YB, Cai Y, Zhang H. Gut microbiota and allergy/asthma: From pathogenesis to new therapeutic strategies. Allergol Immunopathol (Madr) [Internet]. 2017 May 1 [cited 2023 Apr 21];45(3):305–9. Available from: https://www.elsevier.es/en-revista-allergologia-et immunopathologia-105-articulo-gut-microbiota-allergy-asthma-from-pathogenesis S030105461630115Xspa
dc.relation.referencesRiiser A. The human microbiome, asthma, and allergy. Allergy, Asthma and Clinical Immunology [Internet]. 2015 Dec 10 [cited 2023 Apr 21];11(1):1–7. Available from: https://aacijournal.biomedcentral.com/articles/10.1186/s13223-015-0102-0spa
dc.relation.referencesMedical Encyclopedia: A: MedlinePlus [Internet]. [cited 2023 Apr 21]. Available from: https://medlineplus.gov/ency/encyclopedia_A.htmspa
dc.relation.referencesMarchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut [Internet]. 2016 Feb 1 [cited 2023 Apr 21];65(2):330–9. Available from: https://pubmed.ncbi.nlm.nih.gov/26338727/spa
dc.relation.referencesPawankar R, Holgate ST, Rosenwasser LJ. vol 5. 2013 [cited 2023 Apr 21]. Allergy Frontiers:Clinical Manifestations - Google Libros. Available from: 66 https://books.google.com.co/books?id=pgZhtFSvEYIC&printsec=frontcover&hl=es&source=gbs_ ge_summary_r&cad=0#v=onepage&q&f=falsespa
dc.relation.referencesSwanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol [Internet]. 2020 Nov 1 [cited 2023 Apr 21];17(11):687–701. Available from: https://pubmed.ncbi.nlm.nih.gov/32826966/spa
dc.relation.referencesHill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology 2014 11:8 [Internet]. 2014 Jun 10 [cited 2023 Apr 21];11(8):506–14. Available from: https://www.nature.com/articles/nrgastro.2014.66spa
dc.relation.referencesFasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci [Internet]. 2012 [cited 2023 Apr 21];1258(1):25. Available from: /pmc/articles/PMC3384703/spa
dc.relation.referencesAkdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens. J Allergy Clin Immunol [Internet]. 2014 [cited 2023 Apr 21];133(3):621–31. Available from: https://pubmed.ncbi.nlm.nih.gov/24581429/spa
dc.relation.referencesSampson HA, Muñoz-Furlong A, Campbell RL, Adkinson NF, Bock SA, Branum A, et al. Second symposium on the definition and management of anaphylaxis: summary report--Second National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network symposium. J Allergy Clin Immunol [Internet]. 2006 Feb [cited 2023 Apr 21];117(2):391–7. Available from: https://pubmed.ncbi.nlm.nih.gov/16461139/spa
dc.relation.referencesNutten S. Atopic dermatitis: global epidemiology and risk factors. Ann Nutr Metab [Internet]. 2015 May 6 [cited 2023 Apr 21];66 Suppl 1:8–16. Available from: https://pubmed.ncbi.nlm.nih.gov/25925336/spa
dc.relation.referencesBousquet J, Khaltaev N, Cruz AA, Denburg J, Fokkens WJ, Togias A, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA2LEN and AllerGen). Vol. 63, Allergy: European Journal of Allergy and Clinical Immunology. Blackwell Publishing Ltd; 2008. p. 8–160spa
dc.relation.referencesThe Global Initiative for Asthma is supported by unrestricted educational grants from: Visit the GINA website at www.ginaasthma.org GLOBAL STRATEGY FOR ASTHMA MANAGEMENT AND PREVENTION Visit the GINA website at www.ginasthma.org © 2018 Global Initiative for Asthma [Internet]. 2014. Available from: www.ginasthma.orgspa
dc.relation.referencesSicherer SH, Sampson HA. Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol [Internet]. 2014 [cited 2023 Apr 21];133(2). Available from: https://pubmed.ncbi.nlm.nih.gov/24388012/spa
dc.relation.referencesGalli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. 2008 [cited 2023 Apr 21]; Available from: www.nature.com/reprintsspa
dc.relation.referencesSteinman RM 17898760, Banchereau J. Taking dendritic cells into medicine. Nature 2007 449:7161 [Internet]. 2007 Sep 27 [cited 2023 Apr 21];449(7161):419–26. Available from: https://www.nature.com/articles/nature06175spa
dc.relation.referencesWeller PF, Spencer LA. Functions of tissue-resident eosinophils. Nat Rev Immunol [Internet]. 2017 Dec 1 [cited 2023 Apr 21];17(12):746. Available from: /pmc/articles/PMC5783317/spa
dc.relation.referencesZubeldia JM, Baeza ML, Chivato T, Jáuregui I, Senent CJ. El libro de las enfermedades alérgicas. 2021spa
dc.relation.referencesDickson RP, Erb-Downward JR, Huffnagle GB. Homeostasis and its disruption in the lung microbiome. Am J Physiol Lung Cell Mol Physiol [Internet]. 2015 Nov 11 [cited 2023 Apr 21];309(10):L1047. Available from: /pmc/articles/PMC4652146/spa
dc.relation.referencesMarsland BJ, Trompette A, Gollwitzer ES. The gut-lung axis in respiratory disease. Ann Am Thorac Soc [Internet]. 2015 Nov 1 [cited 2023 Apr 21];12:S150–6. Available from: www.atsjournals.orgspa
dc.relation.referencesSender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol [Internet]. 2016 Aug 19 [cited 2023 Apr 21];14(8):e1002533. Available from: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002533spa
dc.relation.referencesHuffnagle GB, Dickson RP, Lukacs NW. The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol [Internet]. 2017 Mar 1 [cited 2023 Apr 21];10(2):299–306. Available from: https://pubmed.ncbi.nlm.nih.gov/27966551/spa
dc.relation.referencesBelkaid Y, Hand TW. Role of the Microbiota in Immunity and inflammation. Cell [Internet]. 2014 Mar 3 [cited 2023 Apr 21];157(1):121. Available from: /pmc/articles/PMC4056765/spa
dc.relation.referencesEnrique I, Logroño N, Alfonso A, Coronel N, Daniela A, Vera B, et al. Dysbiosis and Intestinal Permeability: Causes and Effects of Altering Normal Intestinal Flora. ESPOCH Congresses: The Ecuadorian Journal of STEAM [Internet]. 2021 Sep 9 [cited 2023 Apr 21];1524–1537–1524 1537. Available from: https://knepublishing.com/index.php/espoch/article/view/9640spa
dc.relation.referencesTaylor SL, Simpson JL, Rogers GB. The influence of early-life microbial exposures on long-term respiratory health. Paediatr Respir Rev. 2021 Dec 1;40:15–23spa
dc.relation.referencesFonseca W, Malinczak CA, Fujimura K, Li D, McCauley K, Li J, et al. Maternal gut microbiome regulates immunity to RSV infection in offspring. J Exp Med [Internet]. 2021 Nov 1 [cited 2023 Aug 22];218(11). Available from: https://pubmed.ncbi.nlm.nih.gov/34613328/spa
dc.relation.referencesPeroni DG, Nuzzi G, Trambusti I, Di Cicco ME, Comberiati P. Microbiome Composition and Its Impact on the Development of Allergic Diseases. Front Immunol [Internet]. 2020 Apr 23 [cited 2023 Aug 22];11. Available from: https://pubmed.ncbi.nlm.nih.gov/32391012/spa
dc.relation.referencesRosas-Salazar C, Shilts MH, Tang ZZ, Hong Q, Turi KN, Snyder BM, et al. Exclusive breast feeding, the early-life microbiome and immune response, and common childhood respiratory illnesses. J Allergy Clin Immunol [Internet]. 2022 Sep 1 [cited 2023 Aug 22];150(3):612–21. Available from: https://pubmed.ncbi.nlm.nih.gov/35283139/spa
dc.relation.referencesAkagawa S, Kaneko K. Gut microbiota and allergic diseases in children. Vol. 71, Allergology International. Japanese Society of Allergology; 2022. p. 301–9spa
dc.relation.referencesChen YC, Chen Y, Lasky-Su J, Kelly RS, Stokholm J, Bisgaard H, et al. Environmental and genetic associations with aberrant early-life gut microbial maturation in childhood asthma. Journal of Allergy and Clinical Immunology. 2023 Jun 1;151(6):1494-1502.e14spa
dc.relation.referencesZhou S, Kozik A, Begley L, Cook M, Huang Y. Gut microbiome characteristics associate with clinical and immunologic features of adult asthma phenotype. Journal of Allergy and Clinical Immunology. 2020 Feb 1;145(2):AB10spa
dc.relation.referencesOzcam M, Li D, McCauley K, Schachtschneider C, Visness C, Calatroni A, et al. Features of the Gut Microbiome Relate to Allergic Asthma Phenotypes in Inner-City Children. Journal of Allergy and Clinical Immunology. 2022 Feb 1;149(2):AB145spa
dc.relation.referencesLee-Sarwar K, Dedrick S, Momeni B, Kelly RS, Zeiger RS, O’Connor GT, et al. Association of the gut microbiome and metabolome with wheeze frequency in childhood asthma. Journal of Allergy and Clinical Immunology. 2022 Aug 1;150(2):325–36spa
dc.relation.referencesBokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med [Internet]. 2016 Jun 15 [cited 2023 May 23];8(343). Available from: https://pubmed.ncbi.nlm.nih.gov/27306664/spa
dc.relation.referencesYamaguchi T, Nomura A, Matsubara A, Hisada T, Tamada Y, Mikami T, et al. Effect of gut microbial composition and diversity on major inhaled allergen sensitization and onset of allergic rhinitis. Allergology International. 2023 Jan 1;72(1):135–42spa
dc.relation.referencesHarrigan JJ, Abdallah HO, Clarke EL, Oganisian A, Roy JA, Lautenbach E, et al. Respiratory Microbiome Disruption and Risk for Ventilator-Associated Lower Respiratory Tract Infection. Clin Infect Dis [Internet]. 2022 May 1 [cited 2023 Aug 21];74(9):1564–71. Available from: https://pubmed.ncbi.nlm.nih.gov/34363467/spa
dc.relation.referencesZhou M shi, Zhang B, Gao Z lin, Zheng R ping, Marcellin DFHM, Saro A, et al. Altered diversity and composition of gut microbiota in patients with allergic rhinitis. Microb Pathog. 2021 Dec 1;161:105272spa
dc.relation.referencesDzidic M, Abrahamsson TR, Artacho A, Björkstén B, Collado MC, Mira A, et al. Aberrant IgA responses to the gut microbiota during infancy precede asthma and allergy development. Journal of Allergy and Clinical Immunology. 2017 Mar 1;139(3):1017-1025.e14spa
dc.relation.referencesChua HH, Chou HC, Tung YL, Chiang BL, Liao CC, Liu HH, et al. Intestinal Dysbiosis Featuring Abundance of Ruminococcus gnavus Associates With Allergic Diseases in Infants. Gastroenterology. 2018 Jan 1;154(1):154–67spa
dc.relation.referencesMichalovich D, Rodriguez-Perez N, Smolinska S, Pirozynski M, Mayhew D, Uddin S, et al. Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients. Nat Commun. 2019 Dec 1;10(1)spa
dc.relation.referencesHu C, van Meel ER, Medina-Gomez C, Kraaij R, Barroso M, Kiefte-de Jong J, et al. A population-based study on associations of stool microbiota with atopic diseases in school-age children. Journal of Allergy and Clinical Immunology. 2021 Aug 1;148(2):612–20spa
dc.relation.referencesMo M, Wang J, Gu H, Zhou J, Zheng C, Zheng Q, et al. Intestinal Microbes-based Analysis of Immune Mechanism of Childhood Asthma. Cell Mol Biol. 2022 Feb 28;68(2):70–80spa
dc.relation.referencesYang Z, Chen Z, Lin X, Yao S, Xian M, Ning X, et al. Rural environment reduces allergic inflammation by modulating the gut microbiota. Gut Microbes. 2022;14(1)spa
dc.relation.referencesGuo J, Lv Q, Ariff A, Zhang X, Peacock CS, Song Y, et al. Western oropharyngeal and gut microbial profiles are associated with allergic conditions in Chinese immigrant children. World Allergy Organ J [Internet]. 2019 Aug 1 [cited 2023 Aug 26];12(8):100051. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31440325spa
dc.relation.referencesBlankestijn JM, Lopez-Rincon A, Neerincx AH, Vijverberg SJH, Hashimoto S, Gorenjak M, et al. Classifying asthma control using salivary and fecal bacterial microbiome in children with moderate-to-severe asthma. Pediatr Allergy Immunol [Internet]. 2023 Feb 1 [cited 2023 Aug 24];34(2):e13919. Available from: http://www.ncbi.nlm.nih.gov/pubmed/36825736spa
dc.relation.referencesHuang C, Yu Y, Du W, Liu Y, Dai R, Wang P, et al. Insights into gut microbiome and its functional pathways in asthma patients through high-throughput sequencing. Future Microbiol. 2021 Apr 1;16(6):421–38spa
dc.relation.referencesYuan Y, Wang C, Wang G, Guo X, Jiang S, Zuo X, et al. Airway Microbiome and Serum Metabolomics Analysis Identify Differential Candidate Biomarkers in Allergic Rhinitis. Front Immunol [Internet]. 2022 Jan 5 [cited 2023 Aug 17];12. Available from: https://pubmed.ncbi.nlm.nih.gov/35069544/spa
dc.relation.referencesSun Y, Meng Y, Ou Z, Li Y, Zhang M, Chen Y, et al. Indoor microbiome, air pollutants and asthma, rhinitis and eczema in preschool children – A repeated cross-sectional study. Environ Int. 2022 Mar 1;161spa
dc.relation.referencesSharma A, Laxman B, Naureckas ET, Hogarth DK, Sperling AI, Solway J, et al. Associations between fungal and bacterial microbiota of airways and asthma endotypes. Journal of Allergy and Clinical Immunology. 2019 Nov 1;144(5):1214-1227.e7spa
dc.relation.referencesWang J, Chai J, Zhang L, Zhang L, Yan W, Sun L, et al. Microbiota associations with inflammatory pathways in asthma. Clinical and Experimental Allergy. 2022 May 1;52(5):697 705spa
dc.relation.referencesEspuela-Ortiz A, Lorenzo-Diaz F, Baez-Ortega A, Eng C, Hernandez-Pacheco N, Oh SS, et al. Bacterial salivary microbiome associates with asthma among african american children and young adults. Pediatr Pulmonol. 2019 Dec 1;54(12):1948–56spa
dc.relation.referencesChen R, Wang L, Koch T, Curtis V, Yin-DeClue H, Handley SA, et al. Sex effects in the association between airway microbiome and asthma. Annals of Allergy, Asthma and Immunology. 2020 Dec 1;125(6):652-657.e3spa
dc.relation.referencesRaita Y, Pérez-Losada M, Freishtat RJ, Hahn A, Castro-Nallar E, Ramos-Tapia I, et al. Nasopharyngeal metatranscriptome profiles of infants with bronchiolitis and risk of childhood asthma: a multicentre prospective study. European Respiratory Journal. 2022 Jul 1;60(1)spa
dc.relation.referencesWang Q, Guo A, Sheng M, Zhou H. The changes of respiratory microbiome between mild and severe asthma patients. Microbiol Immunol [Internet]. 2021 May 1 [cited 2023 Aug 22];65(5):204–13. Available from: https://pubmed.ncbi.nlm.nih.gov/33629787/spa
dc.relation.referencesLi Y, Zou C, Li J, Wang W, Guo Y, Zhao L, et al. Upper respiratory tract microbiota is associated with small airway function and asthma severity. BMC Microbiol. 2023 Dec 1;23(1)spa
dc.relation.referencesZhang L, Ai T, Xie C, Xia W, Zhang Y, Liao H, et al. Lower airway microbiome of children with recurrent wheezing: a clinical cohort study. Transl Pediatr. 2022 May 1;11(5):696–705spa
dc.relation.referencesTsai MH, Shih HJ, Su KW, Liao SL, Hua MC, Yao TC, et al. Nasopharyngeal microbial profiles associated with the risk of airway allergies in early childhood. Journal of Microbiology, Immunology and Infection. 2022 Aug 1;55(4):777–85spa
dc.relation.referencesRick EM, Woolnough KF, Seear PJ, Fairs A, Satchwell J, Richardson M, et al. The airway fungal microbiome in asthma. Clinical and Experimental Allergy. 2020 Dec 1;50(12):1325–41spa
dc.relation.referencesThorsen J, Stokholm J, Rasmussen MA, Roggenbuck-Wedemeyer M, Vissing NH, Mortensen MS, et al. Asthma and Wheeze Severity and the Oropharyngeal Microbiota in Children and Adolescents. Ann Am Thorac Soc. 2022 Dec 1;19(12):2031–43spa
dc.relation.referencesSchnell A, Davrandi M, Saxenhofer M, Leboreiro C, Graeter S, Moreira F, et al. Airway inflammation and dysbiosis in antibody deficiency despite the presence of IgG. Journal of Allergy and Clinical Immunology. 2022 Jun 1;149(6):2105-2115.e10spa
dc.relation.referencesKitsios GD, Yang H, Yang L, Qin S, Fitch A, Wang XH, et al. Respiratory tract dysbiosis is associated with worse outcomes in mechanically ventilated patients. Am J Respir Crit Care Med. 2020 Dec 15;202(12):1666–77spa
dc.relation.referencesTurek EM, Cox MJ, Hunter M, Hui J, James P, Willis-Owen SAG, et al. Airway microbial communities, smoking and asthma in a general population sample. EBioMedicine. 2021 Sep 1;71spa
dc.relation.referencesMcCauley K, Durack J, Valladares R, Fadrosh DW, Lin DL, Calatroni A, et al. Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma. Journal of Allergy and Clinical Immunology. 2019 Nov 1;144(5):1187–97spa
dc.relation.referencesBrindisi G, Marazzato M, Brunetti F, De Castro G, Loffredo L, Carnevale R, et al. Allergic rhinitis, microbiota and passive smoke in children: A pilot study. Pediatric Allergy and Immunology. 2022 Jan 1;33(S27):22–6spa
dc.relation.referencesTang HHF, Lang A, Teo SM, Judd LM, Gangnon R, Evans MD, et al. Developmental patterns in the nasopharyngeal microbiome during infancy are associated with asthma risk. Journal of Allergy and Clinical Immunology. 2021 May 1;147(5):1683–91spa
dc.relation.referencesKalantar KL, Moazed F, Christenson SC, Wilson J, Deiss T, Belzer A, et al. Metagenomic comparison of tracheal aspirate and mini-bronchial alveolar lavage for assessment of respiratory microbiota. Am J Physiol Lung Cell Mol Physiol. 2019 Mar 1;316(3):L578–84spa
dc.relation.referencesNiemeier-Walsh C, Ryan PH, Meller J, Ollberding NJ, Adhikari A, Reponen T. Exposure to traffic-related air pollution and bacterial diversity in the lower respiratory tract of children. PLoS One. 2021 Jun 1;16(6 June)spa
dc.relation.referencesChiang TY, Yang YR, Zhuo MY, Yang F, Zhang YF, Fu CH, et al. Microbiome profiling of nasal extracellular vesicles in patients with allergic rhinitis. World Allergy Organ J [Internet]. 2022 Aug 1 [cited 2023 Aug 26];15(8):100674. Available from: http://www.ncbi.nlm.nih.gov/pubmed/36017065spa
dc.relation.referencesFu X, Norbäck D, Yuan Q, Li Y, Zhu X, Hashim JH, et al. Indoor microbiome, environmental characteristics and asthma among junior high school students in Johor Bahru, Malaysia. Environ Int. 2020 May 1;138spa
dc.relation.referencesChen M, He S, Miles P, Li C, Ge Y, Yu X, et al. Nasal Bacterial Microbiome Differs Between Healthy Controls and Those With Asthma and Allergic Rhinitis. Front Cell Infect Microbiol. 2022 Mar 3;12spa
dc.relation.referencesMegremis S, Constantinides B, Xepapadaki P, Yap CF, Sotiropoulos AG, Bachert C, et al. Respiratory eukaryotic virome expansion and bacteriophage deficiency characterize childhood asthma. Sci Rep. 2023 Dec 1;13(1)spa
dc.relation.referencesMariani J, Iodice S, Cantone L, Solazzo G, Marraccini P, Conforti E, et al. Particulate matter exposure and allergic rhinitis: The role of plasmatic extracellular vesicles and bacterial nasal microbiome. Int J Environ Res Public Health. 2021 Oct 2;18(20)spa
dc.relation.referencesDiver S, Haldar K, McDowell PJ, Busby J, Mistry V, Micieli C, et al. Relationship between inflammatory status and microbial composition in severe asthma and during exacerbation. Allergy: European Journal of Allergy and Clinical Immunology. 2022 Nov 1;77(11):3362–76spa
dc.relation.referencesAl Bataineh MT, Hamoudi RA, Dash NR, Ramakrishnan RK, Almasalmeh MA, Sharif HA, et al. Altered respiratory microbiota composition and functionality associated with asthma early in life. BMC Infect Dis. 2020 Sep 22;20(1)spa
dc.relation.referencesRichardson M, Gottel N, Gilbert JA, Gordon J, Gandhi P, Reboulet R, et al. Concurrent measurement of microbiome and allergens in the air of bedrooms of allergy disease patients in the Chicago area. Microbiome. 2019 Jun 3;7(1)spa
dc.relation.referencesTeo SM, Tang HHF, Mok D, Judd LM, Watts SC, Pham K, et al. Airway Microbiota Dynamics Uncover a Critical Window for Interplay of Pathogenic Bacteria and Allergy in Childhood Respiratory Disease. Cell Host Microbe. 2018 Sep 12;24(3):341-352.e5spa
dc.relation.referencesHou J, Song Y, Leung ASY, Tang MF, Shi M, Wang EY, et al. Temporal Dynamics of the Nasopharyngeal Microbiome and its Relationship with Childhood Asthma Exacerbation. Microbiol Spectr. 2022 Jun 29;10(3)spa
dc.relation.referencesBartosik TJ, Campion NJ, Freisl K, Liu DT, Gangl K, Stanek V, et al. The nasal microbiome in patients suffering from non-steroidal anti-inflammatory drugs-exacerbated respiratory disease in absence of corticosteroids. Front Immunol. 2023;14spa
dc.relation.referencesChiu CY, Chan YL, Tsai MH, Wang CJ, Chiang MH, Chiu CC, et al. Cross-talk between airway and gut microbiome links to IgE responses to house dust mites in childhood airway allergies. Sci Rep. 2020 Dec 1;10(1)spa
dc.relation.referencesStanhope J, Weinstein P. Exposure to environmental microbiota may modulate gut microbial ecology and the immune system. Mucosal Immunol. 2023 Apr 1;16(2):99–103spa
dc.relation.referencesHuang YJ, Porsche C, Kozik AJ, Lynch S V. Microbiome–Immune Interactions in Allergy and Asthma. J Allergy Clin Immunol Pract. 2022 Sep 1;10(9):2244–51spa
dc.relation.referencesFrati F, Salvatori C, Incorvaia C, Bellucci A, Di Cara G, Marcucci F, et al. The Role of the Microbiome in Asthma: The Gut−Lung Axis. Int J Mol Sci [Internet]. 2018 Jan 1 [cited 2023 Aug 17];20(1). Available from: https://pubmed.ncbi.nlm.nih.gov/30598019/spa
dc.relation.referencesKemter AM, Nagler CR. Influences on allergic mechanisms through gut, lung, and skin microbiome exposures. Journal of Clinical Investigation. 2019 Apr 1;129(4):1483–92spa
dc.relation.referencesGao Y, Nanan R, Macia L, Tan J, Sominsky L, Quinn TP, et al. The maternal gut microbiome during pregnancy and offspring allergy and asthma. Journal of Allergy and Clinical Immunology. 2021 Sep 1;148(3):669–78spa
dc.relation.referencesValverde-Molina J, García-Marcos L. Microbiome and Asthma: Microbial Dysbiosis and the Origins, Phenotypes, Persistence, and Severity of Asthma. Nutrients [Internet]. 2023 Feb 1 [cited 2023 Aug 22];15(3). Available from: https://pubmed.ncbi.nlm.nih.gov/36771193/spa
dc.relation.referencesHufnagl K, Pali-Schöll I, Roth-Walter F, Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin Immunopathol [Internet]. 2020 Feb 1 [cited 2023 May 23];42(1):75. Available from: /pmc/articles/PMC7066092/spa
dc.relation.referencesVolery M, Scherz V, Jakob W, Bandeira D, Deggim-Messmer V, Lauber-Biason A, et al. Study protocol for the ABERRANT study: antibiotic-induced disruption of the maternal and infant 77 microbiome and adverse health outcomes - a prospective cohort study among children born at term. BMJ Open. 2020 Jun 23;10(6):e036275spa
dc.relation.referencesVercelli D. Microbiota and human allergic diseases: the company we keep. Curr Opin Immunol. 2021 Oct 1;72:215–20spa
dc.relation.referencesLosol P, Choi JP, Kim SH, Chang YS. The role of upper airway microbiome in the development of adult asthma. Immune Netw. 2021 Jun 1;21(3)spa
dc.relation.referencesFujimura KE, Lynch S V. Microbiota in Allergy and Asthma and the Emerging Relationship with the Gut Microbiome. Cell Host Microbe. 2015 May 13;17(5):592–602spa
dc.relation.referencesAguilera AC, Dagher IA, Kloepfer KM. Role of the Microbiome in Allergic Disease Development. Curr Allergy Asthma Rep. 2020 Sep 1;20(9)spa
dc.relation.referencesDennis R, Carabalo L, García E, Caballero A, Aristizabal G, Córdoba H, et al. Asthma and other allergic conditions in Colombia: a study in 6 cities. Ann Allergy Asthma Immunol [Internet]. 2004 [cited 2023 Apr 21];93(6):568–74. Available from: https://pubmed.ncbi.nlm.nih.gov/15609767/spa
dc.relation.referencesDel Campo-Moreno R, Alarcón-Cavero T, D’Auria G, Delgado-Palacio S, Ferrer-Martínez M. Microbiota and Human Health: characterization techniques and transference. Vol. 36, Enfermedades Infecciosas y Microbiologia Clinica. Elsevier Doyma; 2018. p. 241–5.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/spa
dc.subjectEnfermedades alérgicasspa
dc.subjectAsma infantilspa
dc.subjectRinitis alérgicaspa
dc.subjectMicrobioma humanospa
dc.subjectDisbiosisspa
dc.subjectSistema inmunespa
dc.subjectTracto respiratoriospa
dc.subjectDesarrollo tempranospa
dc.subjectHomeostasis inmunológicaspa
dc.subjectPatogénesis alérgicaspa
dc.subjectComunidades microbianasspa
dc.subjectEpidemiología alérgicaspa
dc.subject.lembMicrobiomasspa
dc.subject.lembAlergia en niñosspa
dc.subject.lembAlergia respiratoriaspa
dc.subject.lembMicrobioma gastrointestinalspa
dc.subject.subjectenglishAllergic diseasesspa
dc.subject.subjectenglishChildhood asthmaspa
dc.subject.subjectenglishAllergic rhinitisspa
dc.subject.subjectenglishHuman microbiomespa
dc.subject.subjectenglishDysbiosisspa
dc.subject.subjectenglishImmune systemspa
dc.subject.subjectenglishRespiratory tractspa
dc.subject.subjectenglishEarly developmentspa
dc.subject.subjectenglishImmune homeostasisspa
dc.subject.subjectenglishAllergic pathogenesisspa
dc.subject.subjectenglishMicrobial communitiesspa
dc.subject.subjectenglishAllergic epidemiologyspa
dc.titleAnálisis del papel del microbioma en el desarrollo de enfermedades alérgicas respiratoriasspa
dc.title.alternativeAnalysis of the role of the microbiome in the development of respiratory allergic diseasesspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Pregradospa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
AUTORIZACIÓN.pdf
Tamaño:
336.75 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización para la publicación
Cargando...
Miniatura
Nombre:
BOOM.pdf
Tamaño:
567.18 KB
Formato:
Adobe Portable Document Format
Descripción:
Archivo del trabajo de grado

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones