Evaluación de la producción de hidrógeno en Reactores Bioelectroquímicos de Asistencia Microbial (BEAMR)

dc.contributor.advisorSuárez, Andrés Felipe
dc.contributor.authorOrtiz Rodríguez, Fabián Ricardo
dc.coverage.spatialBogotáspa
dc.creator.emailfabianr-ortizr@unilibre.edu.cospa
dc.date.accessioned2021-07-01T22:19:49Z
dc.date.available2021-07-01T22:19:49Z
dc.date.created2019-01
dc.description.abstractDos modelos de reactor bioelectroquímico de asistencia microbial BEAMR1 fueron diseñados y evaluados para encontrar el método más efectivo para producir hidrógeno a partir de aguas residuales. Como insumo se empleó caña de azúcar, junto con levadura en la cámara anódica y una solución amortiguante en la cámara catódica. Los electrodos fueron hechos de aluminio, grafito y plata, encontrando que los mejores resultados aparecieron cuando se utilizó el electrodo de grafito en la cámara anódica y el electrodo de aluminio en la cámara catódica. El primer modelo, fabricado de acrílico, produjo 300 ml de gas aproximadamente en la cámara catódica en 24 horas, pero, rápidamente, mostró problemas relacionados con filtraciones de los líquidos entre las cámaras. El segundo modelo, fabricado en vidrio, resolvió el problema de las filtraciones y mostro un comportamiento estable en la producción de hidrógeno. Con este se hicieron seis series de experimentos, que mostraron que para altas concentraciones de azúcar en el agua residual, se produce más cantidad de hidrógeno. Los datos fueron utilizados para varios modelos cinéticos. La energía producida por los reactores excede hasta ahora la energía requerida para el proceso bioelectroquímico, mostrando que este tipo de reactores podrían ser usados para una producción eficiente de hidrógeno.spa
dc.description.abstractenglishTwo models of bioelectrochemical reactor of microbial assistance BEARM were designed and evaluated to find an effective method to produce hydrogen from residual waters. Sugar cane was employed as carbon source, using yeast into an anodic camera and a damping solution into a cathodic chamber. Electrodes were made from aluminum, graphite and silver, finding out that the best results appeared when a graphite electrode was utilized into the anodic chamber and another of aluminum was used into the cathodic camera. The first model, made of acrylic, produced 300 ml of gas approximately into the cathodic camera in 24 hours, but, quickly, it showed problems related to filtrations among the liquids of the cameras. The second model, made in glass, solved the problem of filtrations and showed a steady behavior for the production of hydrogen. With this one there were made six sets of experiments, which demonstrated that the higher is the concentration of sugar into the residual water, the more quantity of hydrogen is produced. Data were modeled by several kinetic models. The energy produced by the reactors exceed so far the energy employed for the bioelectrochemical process, showing that this kind of reactors could be used for an efficient hydrogen production.spa
dc.description.sponsorshipUniversidad Libre - Facultad de ingeniería -Maestría en Ingeniería con Énfasis en Energías Alternativasspa
dc.formatPDFspa
dc.identifier.instnameinstname:Universidad Librespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Librespa
dc.identifier.urihttps://hdl.handle.net/10901/19326
dc.language.isospa
dc.relation.referencesBičáková O, Straka P. Production of hydrogen from renewable resources and its effectiveness. International Journal of Hydrogen Energy. 2012;37(16):11563-78.spa
dc.relation.referencesCOMERCIO SDIY. PRODUCCIÓN DE HIDRÓGENO A PARTIR DE BIOMASA Y SU USO EN CELDAS DE COMBUSTIBLE. ALERTA TECNOLÓGICA. 2013:48.spa
dc.relation.referencesMartínez AB, Diana; Bellon, Daniela; Plata, Diana; Latorre, Diana; Porras, Alex; Rincón, Luis editor ESTUDIO DE FACTIBILIDAD DE LA ECONOMIA DEL HIDRÓGENO EN COLOMBIA. WORLD ENGINEERING EDUCATION FORUM; 2013 SEPTIEMBRE 24 A 27; CARTAGENA, COLOMBIA.spa
dc.relation.referencesMejía Arango JG, Acevedo Alvarez, Carlos Alberto Proyección al año 2025 para el uso del hidrógeno en el sector transporte del Valle de Aburrá. Scientia et Technica. 2013;Vol. 18:7.spa
dc.relation.referencesLache Muñoz A. Producción de hidrógeno a partir de energía solar. Panorama en Colombia. Revista Elementos. 2015;5:16.spa
dc.relation.referencesHoffmann P. Tomorrow's Energy. Hidrogen, Fuel Cells, and the Prospects for a Cleaner Planet2001.spa
dc.relation.referencesMiyake J, Igarashi Y, Rögner M. Biohydrogen III. Renewable Energy System Biological Solar Energy Conversion.2004.spa
dc.relation.referencesHu H, Fan Y, Liu H. Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water research. 2008;42(15):4172-8.spa
dc.relation.referencesKargi F, Catalkaya EC. Electrohydrolysis of landfill leachate organics for hydrogen gas production and COD removal. International Journal of Hydrogen Energy. 2011;36(14):8252-60.spa
dc.relation.referencesZhang H, Lin G, Chen J. Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production. International Journal of Hydrogen Energy. 2010;35(20):10851-8.spa
dc.relation.referencesSeifert K, Waligorska M, Laniecki M. Hydrogen generation in photobiological process from dairy wastewater. International Journal of Hydrogen Energy. 2010;35(18):9624-9.spa
dc.relation.referencesDictor M-C, Joulian C, Touzé S, Ignatiadis I, Guyonnet D. Electro-stimulated biological production of hydrogen from municipal solid waste. International Journal of Hydrogen Energy. 2010;35(19):10682-92.spa
dc.relation.referencesShow KY, Lee DJ, Tay JH, Lin CY, Chang JS. Biohydrogen production: Current perspectives and the way forward. International Journal of Hydrogen Energy. 2012;37(20):15616-31.spa
dc.relation.referencesJi C-F, Legrand J, Pruvost J, Chen Z-A, Zhang W. Characterization of hydrogen production by Platymonas Subcordiformis in torus photobioreactor. International Journal of Hydrogen Energy. 2010;35(13):7200-5.spa
dc.relation.referencesKargi F, Catalkaya EC. Hydrogen gas production from olive mill wastewater by electrohydrolysis with simultaneous COD removal. International Journal of Hydrogen Energy. 2011;36(5):3457-64.spa
dc.relation.referencesKargi F. Comparison of different electrodes in hydrogen gas production from electrohydrolysis of wastewater organics using photovoltaic cells (PVC)☆. International Journal of Hydrogen Energy. 2011;36(5):3450-6.spa
dc.relation.referencesEroglu E, Eroglu I, Gunduz U, Turker L, Yucel M. Biological hydrogen production from olive mill wastewater with two-stage processes. International Journal of Hydrogen Energy. 2006;31(11):1527-35.spa
dc.relation.referencesTommasi T, Ruggeri B, Sanfilippo S. Energy valorisation of residues of dark anaerobic production of Hydrogen. Journal of Cleaner Production. 2012;34:91-7.spa
dc.relation.referencesRozendal RA, Hamelers HV, Rabaey K, Keller J, Buisman CJ. Towards practical implementation of bioelectrochemical wastewater treatment. Trends in biotechnology. 2008;26(8):450-9.spa
dc.relation.referencesLu L, Xing D, Liu B, Ren N. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells. Water research. 2012;46(4):1015-26.spa
dc.relation.referencesLu L, Xing D, Ren N. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water research. 2012;46(7):2425-34.spa
dc.relation.referencesNam J-Y, Logan BE. Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell. International Journal of Hydrogen Energy. 2011;36(23):15105-10.spa
dc.relation.referencesNam J-Y, Logan BE. Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells. International Journal of Hydrogen Energy. 2012;37(24):18622-8.spa
dc.relation.referencesDitzig J, Liu H, Logan B. Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). International Journal of Hydrogen Energy. 2007;32(13):2296-304.spa
dc.relation.referencesEker S, Kargi F. Hydrogen gas production from electrohydrolysis of industrial wastewater organics by using photovoltaic cells (PVC)☆. International Journal of Hydrogen Energy. 2010;35(23):12761-6.spa
dc.relation.referencesCusick RD, Kiely PD, Logan BE. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. International Journal of Hydrogen Energy. 2010;35(17):8855-61.spa
dc.relation.referencesKargi F, Uzunçar S. Simultaneous hydrogen gas formation and COD removal from cheese whey wastewater by electrohydrolysis. International Journal of Hydrogen Energy. 2012;37(16):11656-65.spa
dc.relation.referencesKargi F, Uzunçar S. Electro-hydrolysis of cheese whey solution for hydrogen gas production and chemical oxygen demand (COD) removal using photo-voltaic cells (PVC). International Journal of Hydrogen Energy. 2012;37(21):15841-9.spa
dc.relation.referencesKargi F, Catalkaya EC, Uzuncar S. Hydrogen gas production from waste anaerobic sludge by electrohydrolysis: Effects of applied DC voltage. International Journal of Hydrogen Energy. 2011;36(3):2049-56.spa
dc.relation.referencesEscapa A, Gómez X, Tartakovsky B, Morán A. Estimating microbial electrolysis cell (MEC) investment costs in wastewater treatment plants: Case study. International Journal of Hydrogen Energy. 2012;37(24):18641-53.spa
dc.relation.referencesWu TY, Hay JXW, Kong LB, Juan JC, Jahim JM. Recent advances in reuse of waste material as substrate to produce biohydrogen by purple non-sulfur (PNS) bacteria. Renewable and Sustainable Energy Reviews. 2012;16(5):3117-22.spa
dc.relation.referencesLogan B, Grot S, Mallouk T, Liu H, inventors; The Penn State Research Foundation, Ion Power Inc., assignee. Bio-electrochemically assisted microbial reactor that generates hydrogen gas and methods of generating hydrogen gas2010.spa
dc.relation.referencesWrana N, Sparling R, Cicek N, Levin DB. Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis. Journal of Cleaner Production. 2010;18:S105-S11.spa
dc.relation.referencesGhasemi M, Wan Daud WR, Ismail M, Rahimnejad M, Ismail AF, Leong JX, et al. Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance. International Journal of Hydrogen Energy. 2012.spa
dc.relation.referencesClesceri LS, Greenberg AE, Eaton AD. Standard Methods for the Examination of water and wateswater. 20 ed: American Public Health association, American Water Works Association and Water Environment Federation; 1999.spa
dc.relation.referencesLogan BE. Electricity and hydrogen production using microbial fuel cell-based technologies 2008 [Available from: http://www.engr.psu.edu/ce/enve/logan/web_presentations/MFC-MECs-Bruce-Logan-1-2-08.pdf.spa
dc.relation.referencesAmbler JR, Logan BE. Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production. International Journal of Hydrogen Energy. 2011;36(1):160-6.spa
dc.relation.referencesWagner RC, Regan JM, Oh SE, Zuo Y, Logan BE. Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water research. 2009;43(5):1480-8.spa
dc.relation.referencesSelembo PA, Perez JM, Lloyd WA, Logan BE. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. International Journal of Hydrogen Energy. 2009;34(13):5373-81.spa
dc.relation.referencesemestóthy Nándor BP, Rózsenberszki Tamás, Kumar Gopalakrishnan, Koók László, Kelemen Gábor, Kim Sang-Hyoun, Bélafi-Bakó Katalin. Assessment via the modified gompertz-model reveals new insights concerning the effects of ionic liquids on biohydrogen production. International Journal of Hydrogen Energy 2018;43:6.spa
dc.relation.referencesNoblecourt Alexandre CG, Larroche Christian, Santa-Catalina Gaëlle, Trably Eric, Fontanille Pierre. High hydrogen production rate in a submerged membrane anaerobic bioreactor. International journal of Hydrogen Energy. 2017;42:10.spa
dc.relation.referencesBlanco Londoño SA. Producción de biohidrógeno a través de la fermentación oscura de residuos – Revisión crítica. UNIVERSIDAD NACIONAL DE COLOMBIA. 2013:118.spa
dc.relation.referencesBlanco Londoño SARC, Tatiana. Producción de biohidrógeno a partir de residuos mediante fermentación oscura: una revisión crítica (1993-2011). Ingeniare Revista chilena de ingeniería. 2012;20 #3:14.spa
dc.relation.referencesKumar KV. Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. Journal of Hazardous Materials. 2006:1538–44.spa
dc.relation.referencesCheng S, Logan BE. High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresource technology. 2011;102(3):3571-4.spa
dc.relation.referencesSearmsirimongkol P, Rangsunvigit P, Leethochawalit M, Chavadej S. Hydrogen production from alcohol distillery wastewater containing high potassium and sulfate using an anaerobic sequencing batch reactor. International Journal of Hydrogen Energy. 2011;36(20):12810-21.spa
dc.relation.referencesShow KY, Lee,D.J., Tay,J.H., Lin,C.Y., Chang,J.S. . Biohydrogen production: Current perspectives and the way forward. international journal of hydrogen energy 2012:16.spa
dc.relation.referencesNasr M, Tawfik A, Ookawara S, Suzuki M. Biological Hydrogen Production from Starch Wastewater Using a Novel Up-flow Anaerobic Staged Reactor. BioResourcescom. 2009:17.spa
dc.relation.referencesDonggou S, Bing H, Wengang Z, Huaiyuan Z, Wen W, Jing D. Kinetic models of hydrogen production process by batch anaerobic fermentation from contained sugar wastewater. Advanced Materials Research. 2013;634-638:6.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.lembHidrógeno -- Producciónspa
dc.subject.lembQuimica industrial | Procesos quimicosspa
dc.subject.lembReactores de lecho empacadospa
dc.subject.proposalReactor Bioelectroquímico de Asistencia Microbial (BEAMR)spa
dc.subject.proposalHidrógenospa
dc.subject.proposalObtención de energíaspa
dc.subject.proposalAguas residualesspa
dc.subject.subjectenglishBioelectrochemical Microbial Assist Reactor (BEAMR)spa
dc.subject.subjectenglishHydrogenspa
dc.subject.subjectenglishObtaining energyspa
dc.subject.subjectenglishSewage waterspa
dc.titleEvaluación de la producción de hidrógeno en Reactores Bioelectroquímicos de Asistencia Microbial (BEAMR)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Maestríaspa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
TESIS Ortiz Rodriguez Fabian Ricardo.pdf
Tamaño:
2.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría
Cargando...
Miniatura
Nombre:
ortiz r.pdf
Tamaño:
449.9 KB
Formato:
Adobe Portable Document Format
Descripción:
Formato de autorización

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: