Potencial de generación de energía eléctrica con la tecnología piezoeléctrica aplicada al tránsito de bicicletas de la ciudad de Bogotá D.C.

dc.contributor.advisorBohórquez Ávila, Carlos Arturo
dc.contributor.authorNoguera Vega, Luis Antonio
dc.coverage.spatialBogotáspa
dc.creator.emailluis-noguerav@unilibre.edu.cospa
dc.date.accessioned2020-11-03T12:56:09Z
dc.date.available2020-11-03T12:56:09Z
dc.date.created2019
dc.description.abstractEl presente trabajo de investigación presenta los resultados de un estudio que busca analizar el potencial que puede tener la instalación de dispositivos piezoeléctricos en ciclorrutas y su interacción con el tráfico de bicicletas, como aporte a la búsqueda de alternativas de tecnologías de generación de energía eléctrica que permitan aprovechar el recurso presente en las ciclovías. El proyecto se centró en el análisis del tráfico de las bicicletas y su interacción con la ciclorruta, con lo cual fue posible determinar tendencias de uso y caracterizar su comportamiento diario. Con esta información se investigó que dispositivos piezoeléctricos pueden ser incorporados en estas vías con las características de las mismas, obteniendo curvas de generación de energía en función de la velocidad de desplazamiento. Se pudo concluir que el tráfico de bicicletas tiene un potencial significativo, pero desafortunadamente se ve opacado por los costos de estos dispositivos que en sí hacen que económicamente su implementación no sea nada atractiva, lo que deja a este tipo de tecnologías a la merced de los incentivos tributarios y apoyo en la financiación por parte de entidades o fondos gubernamentales. Asimismo, es evidente la necesidad de desarrollar una celda o baldosa que se adapte a las condiciones del tráfico de las bicicletas y que permita optimizar este recurso, ya que por día se puede tener un tráfico de 1206 bicicletas en promedio por hora y velocidades de circulación que pueden estar entre los 10 km/h y 30 km/h, llegando a generar hasta 9.6 kWh por día.spa
dc.description.abstractThis research paper presents the results of a study that seeks to analyze the potential that the installation of piezoelectric devices can have in bike paths and their interaction with bicycle traffic, as a contribution to the search for alternatives for electric power generation technologies. Allow to take advantage of the resource present in the cycle ways. The project focused on the analysis of the dynamics of bicycle traffic and its interaction with the bike path, with which it was possible to determine usage trends and characterize their daily behavior. With this information it was investigated that piezoelectric devices can be incorporated in these roads with their characteristics, obtaining power generation curves according to the speed of displacement. It could be concluded that bicycle traffic has significant potential, but unfortunately, it is overshadowed by the costs of these devices that in themselves make their implementation economically unattractive, leaving this type of technology at the mercy of the tax incentives and funding support from government entities or funds. Likewise, it is evident the need to develop a cell or tile that adapts to the conditions of the bicycle traffic and that allows optimizing this resource, since per day you can have an average traffic of 1206 bicycles per hour and circulation speeds which can be between 10 km / h and 30 km / h, generating up to 9.6 kWh per day.Eng
dc.description.sponsorshipUniversidad Libre - Facultad de Ingeniería - Maestría en Ingeniería con énfasis en Energías Alternativasspa
dc.formatPDFspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad Librespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Librespa
dc.identifier.urihttps://hdl.handle.net/10901/18601
dc.language.isospa
dc.relation.referencesA. T. Papagiannakis and E. Masad, Pavement Design and Materials. 2008.spa
dc.relation.referencesA. T. Papagiannakis and E. Masad, Pavement Design and Materials. 2008.spa
dc.relation.referencesG. Guldentops, A. M. Nejad, C. Vuye, W. Van den bergh, and N. Rahbar, “Performance of a pavement solar energy collector: Model development and validation,” Appl. Energy, vol. 163, pp. 180–189, Feb. 2016.spa
dc.relation.referencesT. Morbiato, C. Borri, and R. Vitaliani, “Wind energy harvesting from transport systems: A resource estimation assessment,” Appl. Energy, vol. 133, pp. 152–168, Nov. 2014.spa
dc.relation.referencesS. Orrego et al., “Harvesting ambient wind energy with an inverted piezoelectric flag,” Appl. Energy, vol. 194, pp. 212–222, May 2017.spa
dc.relation.referencesZ. Lu, H. Zhang, C. Mao, and C. M. Li, “Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body,” Appl. Energy, vol. 164, pp. 57–63, Feb. 2016.spa
dc.relation.referencesH. Roshani, S. Dessouky, A. Montoya, and A. T. Papagiannakis, “Energy harvesting from asphalt pavement roadways vehicle-induced stresses: A feasibility study,” Appl. Energy, vol. 182, pp. 210–218, Nov. 2016.spa
dc.relation.referencesZ. Nili Ahmadabadi and S. E. Khadem, “Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device,” J. Sound Vib., vol. 333, no. 19, pp. 4444–4457, Sep. 2014.spa
dc.relation.referencesS. Ahmad, M. Abdul Mujeebu, and M. A. Farooqi, “Energy harvesting from pavements and roadways: A comprehensive review of technologies, materials, and challenges,” Int. J. Energy Res., vol. 43, no. 6, pp. 1974– 2015, May 2019.spa
dc.relation.referencesH. D. Zhao, J. M. Ling, and P. C. Fu, “A Review of Harvesting Green Energy from Road,” Adv. Mater. Res., vol. 723, pp. 559–566, Aug. 2013.spa
dc.relation.referencesH. Xiong, L. Wang, D. C. Wang D, D. Wang, and C. Druta, “Piezoelectric energy harvesting from traffic induced deformation of pavements. Int J Pavement Res Technol,” Int. J. Pavement Res. Technol., vol. 5, no. 5, Sep. 2012.spa
dc.relation.references] H. Xiong and L. Wang, “Piezoelectric energy harvester for public roadway: On-site installation and evaluation,” Appl. Energy, vol. 174, pp. 101–107, Jul. 2016.spa
dc.relation.referencesM. McGee, “Global Warming Update,” Co2.Earth, 2017. .spa
dc.relation.referencesA. M. Elhalwagy, M. Y. M. Ghoneem, and M. Elhadidi, “Feasibility Study for Using Piezoelectric Energy Harvesting Floor in Buildings’ Interior Spaces,” Energy Procedia, vol. 115, pp. 114–126, Jun. 2017.spa
dc.relation.referencesA. Morales Espitia and J. C. Calderón, “ANÁLISIS DE CONVENIENCIA DE LA IMPLEMENTACIÓN DE LA ENERGÍA PIEZOELÉCTRICA EN LAS SALAS DE CINECOLOMBIA EN LA CIUDAD DE BOGOTÁ D.C.,” Universidad Distrital, 2012.spa
dc.relation.referencesX. Xu, D. Cao, H. Yang, and M. He, “Application of piezoelectric transducer in energy harvesting in pavement,” Int. J. Pavement Res. Technol., 2018.spa
dc.relation.referencesU. Ministerio de Minas Energía, unidad de planeación minero energética, “PLAN DE EXPANSIÓN DE REFERENCIA GENERACIÓN – TRANSMISIÓN,” 2016.spa
dc.relation.referencesSecretaría Distrital de movilidad, “La Bicicleta en Bogotá,” Bogotá D.C, 2016.spa
dc.relation.referencesM. A. A. Abdelkareem et al., “Energy harvesting sensitivity analysis and assessment of the potential power and full car dynamics for different road modes,” Mech. Syst. Signal Process., vol. 110, pp. 307–332, 2018.spa
dc.relation.referencesZ. Yang, S. Zhou, J. Zu, and D. Inman, “High-Performance Piezoelectric Energy Harvesters and Their Applications,” Joule, vol. 2, no. 4, pp. 642–697, 2018.spa
dc.relation.referencesL. Guo and Q. Lu, “Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements,” Renew. Sustain. Energy Rev., vol. 72, no. December 2015, pp. 761–773, 2017.spa
dc.relation.referencesT. Fan, “Nano-scale energy harvester of piezoelectric/piezomagnetic structures with torsional mode,” Mech. Syst. Signal Process., vol. 112, pp. 147–153, 2018.spa
dc.relation.referencesM. H. S. Alrashdan, A. A. Hamzah, and B. Y. Majlis, “Power density optimization for MEMS piezoelectric micro power generator below 100 Hz applications,” Microsyst. Technol., vol. 24, no. 4, pp. 2071–2084, 2018.spa
dc.relation.referencesC. Espitia and E. Hernández, “Valoración de la capacidad de generación de energía eléctrica por medio de un dispositivo con efecto piezoeléctrico en las entradas vehiculares de la sede central de la UIS,” Universidad Industrial de Santander, 2011.spa
dc.relation.referencesCongreso de Colombia, “LEY 1715 2014,” 13 de mayo de 2014, 2014. [Online]. Available: http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.html. [Accessed: 20-Nov-2018].spa
dc.relation.references. FLOREZ ROJAS, “ENERGÍAS ALTERNATIVAS EN COLOMBIA BAJO LA LEY 1715,” Universidad Militar Nueva Granada, 2015.spa
dc.relation.referencesC. de R. de E. y G. CREG, CREG 030 DE 2018. 2018.spa
dc.relation.referencesC. de R. de E. y G. CREG, CREG 038 DE 2018. 2018.spa
dc.relation.referencesM. D. M. Y. E. MINHACIENDA. MINMINAS, “Decreto 1543 de 2017,” 2017. [Online]. Available: http://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=83537. [Accessed: 29-Nov-2018].spa
dc.relation.referencesLa Bicicleta, “Tipos de bicicleta,” 2015. [Online]. Available: https://labicicleta.info/tipos-de-bicicleta/. [Accessed: 07-Nov-2018].spa
dc.relation.referencesMinisterio de Transporte de Colombia, “Guía de ciclo-infraestructura para ciudades colombianas,” Bogotá D.C., 2016.spa
dc.relation.referencesDepartamento Nacional de Planeación de Colombia, “Construcción de cicloinfraestructura y servicios complementarios,” Bogotá D.C, 2017.spa
dc.relation.referencesA. Brown et al., “Estimating Renewable Energy Economic Potential in the United States: Methodology and Initial Results,” 2014.spa
dc.relation.references] A. Lopez, B. Roberts, D. Heimiller, N. Blair, and G. Porro, “U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis,” 2012.spa
dc.relation.referencesR. Vela, “Caracterización de la Respuesta Piezoeléctrica de Compuestos Basados en PVDF - BaTiO3,” Universidad Carlos III de Madrid, 2013.spa
dc.relation.referencesB. Gusarov, “PVDF piezoelectric polymers : characterization and application to thermal energy harvesting,” Université Grenoble Alpes, 2015.spa
dc.relation.referencesS.-E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys., vol. 82, no. 4, pp. 1804–1811, Aug. 1997.spa
dc.relation.referencesSeung-Eek Park and T. R. Shrout, “Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 44, no. 5, pp. 1140–1147, Sep. 1997.spa
dc.relation.referencesT. L. Jordan and Z. Ounaies, “Piezoelectric Ceramics Characterization,” 2001.spa
dc.relation.referencesE. Fukada, “History and recent progress in piezoelectric polymers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 47, no. 6, pp. 1277–1290, Nov. 2000.spa
dc.relation.referencesE. K. Akdogan, M. Allahverdi, and A. Safari, “Piezoelectric composites for sensor and actuator applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 5, pp. 746–775, May 2005.spa
dc.relation.referencesE. K. Akdogan, M. Allahverdi, and A. Safari, “Piezoelectric composites for sensor and actuator applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 5, pp. 746–775, May 2005.spa
dc.relation.referencesP. Muralt, R. G. Polcawich, and S. TrolierMcKinstry, “Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting,” MRS Bull. , vol. 34, 2009.spa
dc.relation.referencesB. Jaffe, W. R. Cook, and H. L. Jaffe, Piezoelectric ceramics, 3rd ed. Academic Press, 2012.spa
dc.relation.referencesT. R. Shrout and S. J. Zhang, “Lead-free piezoelectric ceramics: Alternatives for PZT?,” J. Electroceramics, vol. 19, no. 1, pp. 113–126, Oct. 2007.spa
dc.relation.referencesA. J. Moulson and J. M. Herbert, Electroceramics. 2003.spa
dc.relation.referencesH. Jaffe and D. A. Berlincourt, “Piezoelectric transducer materials,” Proc. IEEE, vol. 53, no. 10, pp. 1372–1386, 1965.spa
dc.relation.referencesH. JAFFE, “Piezoelectric Ceramics,” J. Am. Ceram. Soc., vol. 41, no. 11, pp. 494–498, Nov. 1958.spa
dc.relation.referencesL. EGERTON and D. M. DILLON, “Piezoelectric and Dielectric Properties of Ceramics in the System Potassium-Sodium Niobate,” J. Am. Ceram. Soc., vol. 42, no. 9, pp. 438–442, Sep. 1959.spa
dc.relation.referencesY. Guo, K. Kakimoto, and H. Ohsato, “(Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics,” Mater. Lett., vol. 59, no. 2–3, pp. 241–244, Feb. 2005.spa
dc.relation.referencesR. T. Smith and F. S. Welsh, “Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate,” J. Appl. Phys., vol. 42, no. 6, pp. 2219–2230, May 1971.spa
dc.relation.referencesF. R. Cruickshank, “Ferroelectric Materials and their Applications,” J. Mod. Opt., vol. 39, no. 5, pp. 1162–1163, May 1992.spa
dc.relation.referencesR. Rai, S. Sharma, and R. N. P. Choudhary, “Dielectric and piezoelectric studies of Fe doped PLZT ceramics,” Mater. Lett., vol. 59, no. 29–30, pp. 3921–3925, Dec. 2005.spa
dc.relation.referencesN. K. James, D. van den Ende, U. Lafont, S. van der Zwaag, and W. A. Groen, “Piezoelectric and mechanical properties of structured PZT–epoxy composites,” J. Mater. Res., vol. 28, no. 4, pp. 635–641, Feb. 2013.spa
dc.relation.referencesV. Janicek and M. Husak, “European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) Polymer Based Piezoelectric Energy Microgenerator.”spa
dc.relation.references] R. Bechmann, “Elastic and Piezoelectric Constants of Alpha-Quartz,” Phys. Rev., vol. 110, no. 5, pp. 1060–1061, Jun. 1958.spa
dc.relation.referencesJ. G. Webster, H. Eren, and H. Eren, Measurement, Instrumentation, and Sensors Handbook, Second Edition. CRC Press, 2014.spa
dc.relation.referencesA. S. Karapuzha, “Exploration of Non-MPB PZT Compositions for High Piezoelectric Voltage Sensitive 0-3 Composites,” 2014.spa
dc.relation.referencesS.-J. Yoon et al., “Piezoelectric Properties of Pb[Zr0.45Ti0.5- xLux(Mn1/3Sb2/3)0.05]O3 Ceramics,” J. Am. Ceram. Soc., vol. 81, no. 9, pp. 2473–2476, Jan. 2005.spa
dc.relation.referencesS. R. Moheimani and A. J. Fleming, Piezoelectric Transducers for Vibration Control and Damping. London: Springer-Verlag, 2006.spa
dc.relation.referencesR. C. Pullar et al., “Manufacture and measurement of combinatorial libraries of dielectric ceramics. Part II. Dielectric measurements of Ba1-xSrxTiO3 libraries,” J. Eur. Ceram. Soc., vol. 27, no. 16, pp. 4437–4443, 2007.spa
dc.relation.referencesL. APC International, Piezoelectric ceramics : principles and applications. APC International, 2011.spa
dc.relation.references] D. Gretarsson, “Energy Harvesting using Piezoelectric Generators,” Copenhagen, 2007.spa
dc.relation.referencesSagentia, “Energy Harvesting,” 2016.spa
dc.relation.referencesH.-H. Rogner et al., “Energy Resources and Potentials,” in Global Energy Assessment, 2012, pp. 430–503.spa
dc.relation.referencesN. Maluf, K. Williams, and N. Maluf, Introduction to microelectromechanical systems engineering. Artech House, 2004.spa
dc.relation.referencesS. G. Kim, S. Priya, and I. Kanno, “Piezoelectric MEMS for energy harvesting,” MRS Bull., vol. 37, no. 11, pp. 1039–1050, 2012.spa
dc.relation.referencesAlcancía Mayor de Bogotá, “Proyecciones de población por localidades para Bogotá 2016-2020,” Bogotá D.C, 2014.spa
dc.relation.referencesSecretaría Distrital de Movilidad, “La bicicleta en Bogotá,” Bogotá D.C, 2016.spa
dc.relation.referencesR. Caracol, Las ciclorutas más transitadas: Las cinco ciclorutas más transitadas en Bogotá. Colombia, 2017.spa
dc.relation.referencesAlcaldía Mayor de Bogotá, “Mapa CicloRutas,” Bogotá D.C, 2017.spa
dc.relation.referencesS. Meneses, “Estudio de la Universidad Libre, uso de la bicicleta en Bogotá,”spa
dc.relation.references[Online]. Available: http://www.unilibre.edu.co/bogota/ul/noticias/noticias-universitarias/3651- estudio-de-la-universidad-libre-revela-completa-radiografia-del-uso-de-la- bicicleta-en-bogota. [Accessed: 06-Nov-2018].spa
dc.relation.referencesA. Alvarez, “La medida de rueda ideal: ¿26, 27’5 o 29?,” 2013. [Online]. Available: https://solobici.es/la-medida-de-rueda-ideal-26-275-o-29/. [Accessed: 08-Nov-2018].spa
dc.relation.referencesQ. He, X. Fan, and D. Ma, “Full Bicycle Dynamic Model for Interactive Bicycle Simulator,” J. Comput. Inf. Sci. Eng., vol. 5, no. 4, p. 373, 2005.spa
dc.relation.referencesE. L. WANG and M. L. HULL, “The Impact of Bicycle Suspension on Pedaling Forces,” Appl. Sci. Precis. Eng. Innov. Pts 1 2, vol. 479–480, pp. 338–342, 1996.spa
dc.relation.referencesE. L. WANG and M. L. HULL, “The effect of tyre and rider properties on the stability of a bicycle,” Adv. Mech. Eng., vol. 7, no. 12, pp. 1–19, 1996.spa
dc.relation.referencesE. L. Wang and M. L. Hull, “A model for determining rider induced energy losses in bicycle suspension systems,” Veh. Syst. Dyn., vol. 25, no. 3, pp. 223–246, 1996.spa
dc.relation.referencesP. NAVARRO, R.-W. RUI-WAMBA, C. ORIOL, and A. FERNÁNDEZ, “LA INGENIERÍA DE LA BICICLETA,” 2009.spa
dc.relation.referencesG. Di Rado, D. Presta, and G. Devincenzi, “Análisis de las fuerzas que actúan en la interface neumático – carretera. Modelos de simulación de aceleración.,” Mecánica Comput., vol. XXXII, pp. 2333–2362, 2013.spa
dc.relation.referencesJ. Renart and P. Roura-Grabulosa, “Deformation of an inflated bicycle tire when loaded,” Am. J. Phys., vol. 87, no. 2, pp. 102–109, 2019.spa
dc.relation.referencesE. L. WANG and M. L. HULL, “Vehicle System Dynamics : International Journal of Vehicle Mechanics and Identification of the mechanical properties of bicycle tyres for modelling of bicycle dynamics,” no. January 2013, pp. 37– 41, 1996.spa
dc.relation.referencesR. Ahmed, F. Mir, and S. Banerjee, “A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity,” Smart Mater. Struct., vol. 26, no. 8, p. 085031, 2017.spa
dc.relation.referencesK. B. Kim et al., “Optimized composite piezoelectric energy harvesting floor tile for smart home energy management,” Energy Convers. Manag., vol. 171, no. January, pp. 31–37, 2018.spa
dc.relation.referencesK. Q. Fan and Z. H. Liu, “Capturing energy through a shoe-mounted piezoelectric energy harvester,” IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM, vol. 2018–July, pp. 768–773, 2018.spa
dc.relation.referencesE. Pérez Pineda and S. Velazquez Alfaro, “Diseño e implementación de un generador piezoeléctrico baldosa, para alimentar un sistema de iluminación de baja potencia.,” 2016.spa
dc.relation.referencesY. Kuang and M. Zhu, “Design study of a mechanically plucked piezoelectric energy harvester using validated finite element modelling,” Sensors Actuators, A Phys., vol. 263, pp. 510–520, 2017.spa
dc.relation.referencesX. Ma, A. Wilson, C. D. Rahn, and S. Trolier-McKinstry, “Efficient Energy Harvesting Using Piezoelectric Compliant Mechanisms: Theory and Experiment,” J. Vib. Acoust., vol. 138, no. 2, p. 021005, 2015.spa
dc.relation.referencesF. Duarte and F. Casimiro, “The way for energy harvesting: Business model design. Diss,” 2011.spa
dc.relation.referencesF. Balouchi, “Footfall Energy Harvesting Conversion Mechanisms,” 2013.spa
dc.relation.referencesJ. Ryall, “Japan harnesses energy from footsteps,” 2008. [Online]. Available: https://www.telegraph.co.uk/news/earth/energy/3721841/Japan-harnesses- energy-from-footsteps.html. [Accessed: 11-Jun-2019].spa
dc.relation.referencesSoundpower corporation, “Soundpower corporation,” 2019. [Online]. Available: http://www.soundpower.co.jp/work/vibration.html#ttl_N7. [Accessed: 11-Jun-2019].spa
dc.relation.referencesFarahat and Baher Ismail, “Piezoelectric materials "Potentials and Constrains" Upgrading Designs and Techniques,” 2014.spa
dc.relation.referencesE. Bischur and N. Schwesinger, “Energy harvestingfrom floor using organic piezoelectric modules,” in 2012 Power Engineering and Automation Conference, 2012, pp. 1–4.spa
dc.relation.referencesA. Schwartz, “Electricty Generating Dance Floors and Other Miracles of Piezoelectricity,” 2011.spa
dc.relation.referencesE. Bischur and N. Schwesinger, “Piezoelectric energy harvester under parquet floor,” 2011, p. 79770M.spa
dc.relation.referencesH. Kim, S. Priya, and K. Uchino, “Modeling of Piezoelectric Energy Harvesting Using Cymbal Transducers,” Jpn. J. Appl. Phys., vol. 45, no. 7, pp. 5836–5840, Jul. 2006.spa
dc.relation.referencesD. Hill et al., “Assessment of Piezoelectric Materials for Roadway Energy Harvesting: Cost of Energy and Demonstration Roadmap-007,” 2014.spa
dc.relation.referencesH. ZHAO, J. YU, and J. LING, “Finite element analysis of Cymbal piezoelectric transducers for harvesting energy from asphalt pavement,” J. Ceram. Soc. Japan, vol. 118, no. 1382, pp. 909–915, 2010.spa
dc.relation.references] C.-I. Kim et al., “Development and Evaluation of the Road Energy Harvester Using Piezoelectric Cantilevers,” J. Korean Inst. Electr. Electron. Mater. Eng., vol. 25, no. 7, pp. 511–515, 2012.spa
dc.relation.referencesA. Kokkinopoulos, G. Vokas, and P. Papageorgas, “Energy harvesting implementing embedded piezoelectric generators-The potential for the Attiki Odos traffic grid,” Energy Procedia, vol. 50, pp. 1070–1085, 2014.spa
dc.relation.referencesJ. Liang and W.-H. Liao, “Impedance matching for improving piezoelectric energy harvesting systems,” 2010, p. 76430K.spa
dc.relation.referencesY. Zhang, C. S. Cai, and W. Zhang, “Related content A retrofitted energy harvester for low frequency vibrations Experimental study of a multi-impact energy harvester under low frequency excitations,” 2014.spa
dc.relation.referencesZ. Yang, J. Zu, J. Luo, and Y. Peng, “Modeling and parametric study of a force-amplified compressive-mode piezoelectric energy harvester,” J. Intell. Mater. Syst. Struct., vol. 28, no. 3, pp. 357–366, Feb. 2017.spa
dc.relation.referencesO. HOYOS GUTIÉRREZ and C. J. HERNÁNDEZ MEJÍA, “ESTUDIO DE VIABILIDAD TÉCNICA Y ECONÓMICA PARA LA IMPLEMENTACIÓN DE UN SISTEMA DE ENERGÍA SOLAR FOTOVOLTAICA DE 10 KW, CASO ‘HOSPITAL LOCAL DE TENERIFE, MAGDALENA.,’” 2017.spa
dc.relation.referencesIDEAM, “Atlas Interactivo - Radiación IDEAM,” 2019. [Online]. Available: http://atlas.ideam.gov.co/visorAtlasRadiacion.html. [Accessed: 26-Jun-2019].spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subjectGeneración de energíaspa
dc.subjectTecnología piezoeléctricaspa
dc.subjectEnergías alternativasspa
dc.subject.lembGeneración de energía -- Colombiaspa
dc.subject.lembEnergía eléctricaspa
dc.subject.lembEnergias alternativasspa
dc.subject.lembBicicletasspa
dc.subject.proposalPiezoeléctricospa
dc.subject.proposalbicicletaspa
dc.subject.proposaltráficospa
dc.subject.proposalciclorrutaspa
dc.subject.proposalrecolección de energíaspa
dc.subject.subjectenglishPiezoelectricspa
dc.subject.subjectenglishbicyclespa
dc.subject.subjectenglishtrafficspa
dc.subject.subjectenglishbikewayspa
dc.subject.subjectenglishenergy harvestingspa
dc.titlePotencial de generación de energía eléctrica con la tecnología piezoeléctrica aplicada al tránsito de bicicletas de la ciudad de Bogotá D.C.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Maestríaspa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
POTENCIAL DE GENERACIÓN DE ENERGÍA ELÉCTRICA CON LA TECNOLOGÍA PIEZOELÉCTRICA APLICADA AL TRÁNSIT.pdf
Tamaño:
2.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Pregrado
Cargando...
Miniatura
Nombre:
noguera v.pdf
Tamaño:
540.58 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: