Caracterización óptica y eléctrica de películas delgadas de CU3BIS3 para ser usadas como capa absorbente en dispositivos fotovoltaicos.

dc.contributor.advisorMesa Rodríguez, Fredy Giovanni
dc.contributor.authorBallesteros Ballesteros, Vladimir Alfonso
dc.coverage.spatialBogotáspa
dc.date.accessioned2016-08-19T21:28:24Z
dc.date.available2016-08-19T21:28:24Z
dc.date.created2014-08-26
dc.description.abstractLas energías renovables son consideradas aquellas que se generan a partir de procesos naturales que pueden ser reintegrados en forma continua. Dichos procesos se refieren a la luz solar, el viento, el calor de la Tierra, las mareas, los cuerpos de agua y las distintas manifestaciones de la biomasa. Esta energía puede considerarse hipotéticamente inagotable y de constante renovación [1]. Gran parte de la energía renovable obtenida a partir del viento, mareomotriz, geotérmica, biomasa y solar, se convierte posteriormente en energía eléctrica que se distribuir´a a la red de suministro eléctrico directamente o a satisfacer demandas independientes [2–5]. Actualmente, existe un interés mundial por la protección del medio ambiente, la mitigación del impacto que ha generado el hombre sobre ´el y el uso racional de los recursos naturales. En sintonía con lo anterior, existe también un interés global por incentivar el uso de las energías renovables como medio de disminución de la dependencia por los combustibles fósiles, atenuando los riegos adicionales, como la progresiva contaminación y el incremento de gases de invernadero, que ´estos provocan.spa
dc.formatPDF
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad Librespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Librespa
dc.identifier.urihttps://hdl.handle.net/10901/9359
dc.language.isospa
dc.relation.referencesSorensen B. Renewable energy: A technical overview. 1991; 19:386-391.Eng
dc.relation.referencesMercure J.F., Salas P. An assessment of global energy resource economic potential. Energy 2012; 46:322-36.Eng
dc.relation.referencesKalogirou S.A. The potential of solar industrial process heat applications. Applied Energy 2003; 76:337-61.Eng
dc.relation.referencesTien W., Kuo K.C. An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan. Energy 2010; 35:4824-30.Eng
dc.relation.referencesCanale M., Fagiano I., Milanese M. KiteGen. A revolution in wind energy generation. Energy 2009; 34:355-61.Eng
dc.relation.referencesREN21. 2013. Renewables 2013 Global Status Report (Paris: REN21 Secretariat).Eng
dc.relation.referencesSolar energy perspectives: executive summary. International Energy Agency; 2011.Eng
dc.relation.referencesEnslin J.H.R. Maximum power point tracking: a cost saving necessity in solar energy systems. In: Proc. IECON’90; 1990. p. 1073-7.Eng
dc.relation.referencesChamboulegron. A third world view of the photovoltaic market. Solar Energy 1986; 36:381-6Eng
dc.relation.referencesHussein K.H., Muta I., Hoshino T., Osakada. Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions. IEE Proceedings on Generation, Transmission, Distribution 1995; 142:59-64.Eng
dc.relation.referencesZweibel K. Harnessing solar power. Plenum Press; 1990; 109-11.Eng
dc.relation.referencesRosell J.I., Vallverdu X., Lechon M.A., Ibanez M. Design and simulation of a low concentrating photovoltaic/thermal system. Energy Conversion and Management 2005; 46:3034-46.Eng
dc.relation.referencesBruton TM. General trends about photovoltaics based on crystalline silicon. Solar Energy Materials & Solar Cells 2002; 72:3-10.Eng
dc.relation.referencesBraga AFB, Moreira SP, Zampieri PR, Bacchin JMG, Mei PR. New processes for the production of solar-grade polycrystalline silicon: A review. Solar Energy Materials & Solar Cells 2008; 92:418-24.Eng
dc.relation.referencesGoetzberger A, Hebling C. Photovoltaic materials, past, present, future. Solar Energy Materials & Solar Cells 2000; 62:1-19.Eng
dc.relation.referencesVan der Zwaan B, Rabl A. Prospects for PV: a learning curve analysis. Solar Energy 2011; 74:19-31Eng
dc.relation.referencesAouida S, Saadoun M, Boujmil MF, Ben Rabha M, Bessais B. Effect of UV irradiations on the structural and optical features of porous silicon: application in silicon solar cells. Applied Surface Science 2004; 238:193-8Eng
dc.relation.referencesKeogh WM, Blakers AW. Accurate measurement using natural sunlight, of silicon solar cells. Progress in Photovoltaics: Research and Applications 2004; 12:1-19.Eng
dc.relation.referencesHanoka JI. An overview of silicon ribbon growth technology. Solar Energy Materials & Solar Cells 2001; 65:231-7.Eng
dc.relation.referencesSchlemm H, Mai A, Roth S, Roth D, Baumgartner KM, Mueggeb H. Industrial large scale silicon nitride deposition on photovoltaic cells with linear microwave plasma sources. Surface and Coatings Technology 2003; 174-175:208-11Eng
dc.relation.referencesMcCann M, Weber K, Blakers A. Surface passivation by rehydrogenation of siliconnitride-coated silicon wafers. Progress in Photovoltaics: Research and Applications 2005; 13:195-200Eng
dc.relation.referencesAdamian ZN, Hakhoyan AP, Aroutiounian VM, Barseghian RS, Touryan K. Investigations of solar cells with porous silicon as antireflection layer. Solar Energy Materials & Solar Cells 2000; 64:347-51.Eng
dc.relation.referencesBalenzategui JL, Chenlo F. Measurement and analysis of angular response of solar cells. Solar Energy Materials & Solar Cells 2005; 86:53-83.Eng
dc.relation.referencesYang J, Banerjee A, Guha S. Amorphous silicon based photovoltaics from earth to the “final frontier”. Solar Energy Materials & Solar Cells 2003; 78:597-612.Eng
dc.relation.referencesLund CP, Luczak K, Pryor T, Cornish JCL, Jennings PJ, Knipe P, Ahjum F. Field and laboratory studies of the stability of amorphous silicon solar cells and modules. Renewable Energy 2001; 22:287-94Eng
dc.relation.referencesTawada Y, Yamagishi H. Mass-production of large size a-Si modules and future plan. Solar Energy Materials & Solar Cells 2001; 66:95-105.Eng
dc.relation.referencesGreen MA, Basore PA, Chang N, Clugston D, Egan R, Evans R, Hogg D, Jarnason S, Keevers M, Lasswell P, Sullivan JO, Schubert U, Turner A, Wenham SR, Young T. Crystalline silicon on glass (CSG) thin-film solar cell modules. Solar Energy 2010; 77:857-63Eng
dc.relation.referencesAberle AG. Overview on SiN surface passivation of crystalline silicon solar cells. Solar Energy Materials & Solar Cells 2001; 65:239-48.Eng
dc.relation.referencesShah A, Vallat-Sauvain E, Torres P, Meier J, Kroll U, Hof C, Droz C, Goerlitzer M, Wyrsch N, Vanecek M. Intrinsic microcrystalline silicon (mc-Si:H) deposited by VHF-GD (very high frequency-glow discharge): a new material for photovoltaics and optoelectronics. Materials Science and Engineering B 2000; 69-70:219-26Eng
dc.relation.referencesLipinski M, Panek P, Swiatek Z, Beltowska E, Ciach R. Double porous silicon layer on multi-crystalline Si for photovoltaic application. Solar Energy Materials & Solar Cells 2002; 72:271-6.Eng
dc.relation.referencesDobrzanski LA, Drygala A. Laser processing of multicrystalline silicon for texturization of solar cells. Journal of Materials Processing Technology 2007; 191:228-31.Eng
dc.relation.referencesVitanov P, Delibasheva M, Goranova E, Peneva M. The influence of porous silicon coating on silicon solar cells with different emitter thicknesses. Solar Energy Materials & Solar Cells 2000; 61:213-21Eng
dc.relation.referencesWronski CR, Von Roedern B, Kolodziej A. Thin-film Si:H-based solar cells. Vacuum 2008; 82:1145-50.Eng
dc.relation.referencesMacdonald D, McLean K, Deenapanray PNK, DeWolf S, Schmidt J. Electronicallycoupled up-conversion: an alternative approach to impurity photovoltaics in crystalline silicon. Semiconductor Science and Technology 2008; 23:015001Eng
dc.relation.referencesFranklin E, Everett V, Blakers A, Weber K. Sliver solar cells: high-efficiency low-cost PV technology. Advances in OptoElectronics 2007;2007.Eng
dc.relation.referencesFerekides CS, Marinskiy D, Viswanathan V, Tetali B, Palekis V, Selvaraj P, Morel DL. High efficiency CSS CdTe solar cells. Thin Solid Films 2000; 361-62:520-6.Eng
dc.relation.referencesPfisterer F. The wet-topotaxial process of junction formation and surface treatments of Cu2S-CdS thin-film solar cells. Thin Solid Films 2003; 431-432:470-6.Eng
dc.relation.referencesRichards BS, McIntosh KR. Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: ray-tracing simulations. Progress in Photovoltaics: Research and Applications 2007; 15:27-34.Eng
dc.relation.referencesMesa F, Chamorro W, Vallejo W, Baier R, Dittrich T et al. (2012) Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements. Beilstein J. Nanotechnol. (3):277-284 doi: 10.3762/bjnano.3.31Eng
dc.relation.referencesKumar M, Persson C (2013) Cu3BiS3 as a potential photovoltaic absorber with high optical efficiency. Applied Physics Letters 102(6):062109 doi: 10.1063/1.4792751Eng
dc.relation.referencesFrausto-Solis J, Gozales M, Lopez R (2009) MICAI 2009: Advances in Artificial Intelligence Lecture Notes in Computer Science (ed) Using Wolfe’s Method in Support Vector Machines Learning Stage. Springer Berlin Heidelberg, Guanajuato, Mexico, pp 488-499Eng
dc.relation.referencesKhobragade N, Lamba N (2012) Alternative approach to Wolfe’s modified simplex method for quadratic programming problems. Int. J. Latest Trend Math. 2(1):19-24Eng
dc.relation.referencesMurphy AB (2007) Optical properties of an optically rough coating from inversion of diffuse reflectance measurements. Appl. Opt. 46:3133-3143Eng
dc.relation.referencesJorgensen M, Norrman K, Krebs FC. Stability/degradation of polymer solar cells. Solar Energy Materials & Solar Cells 2008; 92:686-714Eng
dc.relation.referencesBernede J.C., Derouiche H., Djara V. Organic photovoltaic devices: influence of the cell configuration on its performances. Solar Energy Materials & Solar Cells 2005; 87:261-70Eng
dc.relation.referencesWei H., Li W., Li M., Su W., Xin Q., Niu J., Zhang Z., Hu Z. White organic electroluminescent device with photovoltaic performances. Applied Surface Science 2006; 252:2204-8.Eng
dc.relation.referencesSumei Yue, Bin Li, Di Fan, Ziruo Hong, Wenlian Li. Rhenium(I) complex as an electron acceptor in a photovoltaic device. Journal of Alloys and Compounds 2007; 432:L15-7.Eng
dc.relation.referencesMozer A.J., Niyazi Serdar Sariciftci. Conjugated polymer photovoltaic devices and materials. C. R. Chimie 2006; 9:568-77.Eng
dc.relation.referencesItoh M, Takahashi H, Fujii T, Takakura H, Hamakawa Y, Matsumoto Y. Evaluation of electric energy performance by democratic module PV system field test. Solar Energy Materials & Solar Cells 2001; 67:435-40.Eng
dc.relation.referencesWu L., Tian W., Jiang X. Silicon-based solar cell system with a hybrid PV module. Solar Energy Materials & Solar Cells 2005; 87:637-45.Eng
dc.relation.referencesDana C., Olson, Jorge Piris, Reuben T., Collins, Sean E., Shaheen, David S, Ginley. Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films 2006; 496:26-9Eng
dc.relation.referencesBarnett A.M., Rand J.A., Hall R.B., Bisaillon J.C., DelleDonne E.J., Feyock B.W., Ford D.H., Ingram A.E., Mauk M.G., Yasko J.P., Sims P.E. High current, thin siliconon-ceramic solar cell. Solar Energy Materials & Solar Cells 2001; 66:45-50.Eng
dc.relation.referencesAberle Armin G. Fabrication and characterisation of crystalline silicon thin film materials for solar cells. Thin Solid Films 2006; 511-512:26-34.Eng
dc.relation.referencesFave A., Quoizola S., Kraiem J., Kaminski A., Lemiti M., Laugier A. Comparative study of LPE and VPE silicon thin film on porous sacrificial layer. Thin Solid Films 2004; 451-452:308-11.Eng
dc.relation.referencesSagan P., Wisz G., Bester M., Rudyj I.O., Kurilo I.V., Lopatynskij I.E., Virt I.S., Kuzma M., Ciach R. RHEED study of CdTe and HgCdTe thin films grown on Si by pulse laser deposition. Thin Solid Films 2005; 480-481:318-21.Eng
dc.relation.referencesSolanki C.S., Bilyalov R.R., Poortmans J., Nijs J. Transfer of a thin silicon film onto a ceramic substrate. Thin Solid Films 2002; 403-404:34-8Eng
dc.relation.referencesPowalla M., Dimmler B. CIGS solar cells on the way to mass production: Process statistics of a 30 cm × 30 cm module line. Solar Energy Materials & Solar Cells 2010; 67:337-44.Eng
dc.relation.referencesHollingsworth J.A., Banger K.K., Jin M.H.C., Harris J.D., Cowen J.E., Bohannan E.W., Switzer J.A., Buhro W.E., Hepp A.F. Single source precursors for fabrication of I-III-VI 2 thin-film solar cells via spray CVD. Thin Solid Films 2003; 431-432:63-7.Eng
dc.relation.referencesIto S., Murakami T.N., Comte P., Liska P., Gratzel C., Nazeeruddin M.K., Gratzel M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10 %. Thin Solid Films 2008; 516:4613-9.Eng
dc.relation.referencesSarah Messina, Nair M.T.S., Nair P.K. Antimony sulfide thin films in chemically deposited thin film photovoltaic cells. Thin Solid Films 2007; 515:5777-82.Eng
dc.relation.referencesLiehr M., Dieguez-Campo M. Microwave PECVD for large area coating. Surface & Coatings Technology 2005; 200:21-5.Eng
dc.relation.referencesSathyamoorthy R., Senthilarasua S., Lalithaa S., Subbarayana A., Natarajana K., Xavier Mathew. Electrical conduction properties of flash evaporated Zinc Phthalocyanine (ZnPc) thin films. Solar Energy Materials & Solar Cells 2004; 82:169-77.Eng
dc.relation.referencesWu C.Y., Mathews J.A. Knowledge flows in the solar photovoltaic industry: Insights from patenting by Taiwan, Korea, and China. Research Policy 2012; 41:524-40.Eng
dc.relation.referencesSerrano E., Rus G., Garc´ıa-Mart´ınez J. Nanotechnology for sustainable energy. Renewable and Sustainable Energy Reviews 2009; 13:2372-84Eng
dc.relation.referencesSethi V.K., Pandey M., Shukla P. Use of nanotechnology in solar PV cell. International Journal of Chemical Engineering and Applications 2011; 2Eng
dc.relation.referencesManna T.K., Mahajan S.M. Nanotechnology in the development of photovoltaic cells. IEEE 2007: 379-86.Eng
dc.relation.referencesKumar P., Deep A., Sharma S.C., Bharadwaj L.M. Bioconjugation of InGaP quantum dots for molecular sensing. Analytical Biochemistry 2012; 421:285-90.Eng
dc.relation.referencesAroutiounian V., Petrosyan S., Khachatryan A. Studies of the photocurrent in quantum dot solar cells by the application of a new theoretical model. Solar Energy Materials and Solar Cells 2005; 89:165-73.Eng
dc.relation.referencesGorji N.E. A theoretical approach on the strain-induced dislocation effects in the quantum dot solar cells. Solar Energy 2012; 86:935-40.Eng
dc.relation.referencesChen J., Zhao D.W., Song J.L., Sun X.W., Deng W.Q., Liu X.W., et al. Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells. Electrochemistry Communications 2009; 11:2265-7.Eng
dc.relation.referencesEstrella, V., M.T.S. Nair and P.K. Nair, 2003. Semiconducting Cu3BiS3 thin films formed by the solid-state reaction of CuS and bismuth thin films, Semicond. Sci. Technol., 18: 190-194Eng
dc.relation.referencesJ.F. Carlin, U.S. Geological Survey, Reston, Virginia, 2011, p. 198Eng
dc.relation.referencesS. Amore, E. Ricci, G. Borzone, R. Novakovic, Mater. Sci. Eng., A 495 (2008) 108.Eng
dc.relation.referencesB. Brunetti, D. Gozzi, M. Iervolino, V. Piacente, G. Zanicchi, N. Parodi, G. Borzone, Calphad 30 (2006) 431.Eng
dc.relation.referencesR. Novakovic, D. Giuranno, E. Ricci, S. Delsante, D. Li, G. Borzone, Surf. Sci. 605 (2011) 248Eng
dc.relation.referencesA. Sabbar, A. Zrineh, J.P. Dubes, M. Gambino, J.P. Bros, G. Borzone, Thermochim. Acta 395 (2002) 47.Eng
dc.relation.referencesV. Kocman, E.W. Nuffield, Acta Crystallogr. B29 (1973) 2528Eng
dc.relation.referencesE. Makovicky, J. Solid State Chem. 49 (1983) 85Eng
dc.relation.referencesF. Mesa, A. Dussan, G. Gordillo, Phys. Status Solidi C 7 (2010) 917.Eng
dc.relation.referencesD. Colombara, L.M. Peter, K. Hutchings, K.D. Rogers, S. Sch¨afer, J.T.R. Dufton, M.S. Islam. Thin Solid Films, Volume 520, Issue 16, 1 June 2012, Pages 5165-5171.Eng
dc.relation.referencesNuffield, E. W., Econ. Geol. 42 (1947), 147Eng
dc.relation.referencesNair P.K., Huang L., Nair M. T. S.,Hu Hailin, E. A. Meyers and Zingaro R. A., J. Mater Res. 12 (1997), 651.Eng
dc.relation.referencesHu Hailin, G´omez Daza O., Nair P.K. J. Mater. Res 13 2453, 1998Spa
dc.relation.referencesR. Swanepoel, J. Phys. E: Sci. Instrum., Vol. 16 (1983) 1214-1222.Eng
dc.relation.referencesK.K. Ng, Complete Guide to Semiconductor Devices, McGraw-Hill, New York, 1995.Eng
dc.relation.referencesLeeor Kronik, Yoram Shapira, Surface photovoltage phenomena: theory, experiment, and applications, Surface Science Reports, Volume 37, Issues 1-5, December 1999, Pages 1-206, ISSN 0167-5729.Eng
dc.relation.referencesW.H. Brattain, Phys. Rev. 72 (1947) 345Eng
dc.relation.referencesW.H. Brattain, J. Bardeen, Bell System Tech. J. 32 (1953) 1.Eng
dc.relation.referencesS.M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York, 1981Eng
dc.relation.referencesYu.Ya. Gurevich, Yu.V. Pleskov, Z.A. Rotenberg, Photoelectrochemistry, Consultant Bureau, New York, 1980.Eng
dc.relation.referencesWolfe P. (1959) The simplex method for quadratic programming. Econometrica 27(3):382-398 http://www. jstor.org/stable/1909468Eng
dc.relation.referencesS.C. Jain, J.R. Willis, R. Bullough, Adv. Phys. 39 (1990), 127-190.Eng
dc.relation.referencesS.C. Jain, A.H. Harker, R.A. Cowley, Phil. Mag. A 75 (1997), 1461-1515.Eng
dc.relation.referencesF.C. Frank, J. Van der Merve, Proc. R. Soc. A 198 (1949), 216-225.Eng
dc.relation.referencesR. People, J.C. Bean, Appl. Phys. Lett. 49 (1985), 229Eng
dc.relation.referencesJ.Y. Tsao, B.W. Dodson, S.T. Picraux, D.M: Cornelison, Phys. Rev. Lett. 59 (1987), 2455-2458.Eng
dc.relation.referencesW. Bollmann, Crystal Defects and Crystalline Interfaces, Springer, Berlin, 1970.Eng
dc.relation.referencesC.W. Pei, B. Turk, W.I. Wang, T.S. Kuan, J. Appl. Phys. 90 (2001), 5959-5962.Eng
dc.relation.referencesP.M.J. Maree, J.C. Barbour, J.F. Van der Veen, K.L. Kavanagh, C.W.T. BulleLieuwma, M.P.A. Viegers, J. Appl. Phys. 62 (1987), 4413-4420.Eng
dc.relation.referencesJ.P. Dismukes, L. Ekstrom, R.J.Paff, J. Phys. Chem. 68 (1964), 3021.Eng
dc.relation.referencesJ.P. Hirth, J. Lothe, Theory of Dislocations, McGraw-Hill, New York, 1968.Eng
dc.relation.referencesJ. Singh. Optical Properties of Condensed Matter and Applications. 1st edition. John Wiley & Sons Ltd, England. pp.7-15. 2006.Eng
dc.relation.referencesS.S. Sun, N.S. Sariciftci, Organic Photovoltaics: Mechanisms, Materials, and Devices (Optical Engineering), CRC Press, Boca Raton, 2005.Eng
dc.relation.referencesM.K. Siddiki, J. Li, D. Galipeau, Q. Qiao, A review on polymer multijunction solar cells, Energy and Environmental Science 3 (2010) 867-883.Eng
dc.relation.referencesT. Xu, Q. Qiao, Conjugated polymer-inorganic semiconductor hybrid solar cells, Energy and Environmental Science 4 (2011) 2700-2720.Eng
dc.relation.referencesJ.F. Carlin, U.S. Geological Survey, Reston, Virginia, 2011, p. 198.Eng
dc.relation.referencesMesa F, Duss´an A, P´aez-Sierra BA, Rodr´ıguez-Hernandez H. (2014) Efecto Hall y estudio de fotovoltaje superficial transiente (SPV) en pel´ıculas delgadas de Cu3BiS3. Universitas Scientiarum 19(2): 99-105 doi: 10.11144/Javeriana.SC19-2. ehefSpa
dc.relation.referencesH. Zhu, et al. Applications of AMPS-1D for solar cell simulation in: Proceedings of the National Center for Photovoltaics (NCPV) 15th Program Review Meeting, Denver, Colorado, USA, 1999, pp.309-314.Eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subjectDispositivos fotovoltaicosspa
dc.subjectEnergías alternativasspa
dc.subjectCapa absorbentespa
dc.subject.lembTESIS - FACULTAD DE INGENIERÍAspa
dc.subject.lembMAESTRÍA EN ENERGÍAS ALTERNATIVASspa
dc.subject.lembÓPTICAspa
dc.subject.lembELECTRICIDADspa
dc.subject.lembFOTOELECTRICIDADspa
dc.subject.lembENERGÍAspa
dc.subject.lembENERGÍA SOLARspa
dc.subject.lembENERGÍA ELÉCTRICAspa
dc.subject.proposalÓpticaspa
dc.subject.proposalEléctricaspa
dc.subject.proposalPelículas delgadasspa
dc.subject.proposalDispositivosspa
dc.subject.proposalFotovoltaicosspa
dc.titleCaracterización óptica y eléctrica de películas delgadas de CU3BIS3 para ser usadas como capa absorbente en dispositivos fotovoltaicos.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Maestríaspa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
VERSIÓN FINAL.pdf
Tamaño:
9.84 MB
Formato:
Adobe Portable Document Format
Descripción:
BallesterosBallesterosVladimirAlfonso2014
Cargando...
Miniatura
Nombre:
Vladimir Alfonso Ballesteros Ballesteros.pdf
Tamaño:
379.94 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: