Evaluación de un catalizador heterogéneo basado en dióxido de titanio y potasio para la producción de biodiesel de palma
| dc.contributor.advisor | Suarez Escobar, Andrés Felipe | |
| dc.contributor.author | Rios Linares, Ricardo Augusto | |
| dc.coverage.spatial | Bogotá | spa |
| dc.date.accessioned | 2017-09-14T20:30:20Z | |
| dc.date.available | 2017-09-14T20:30:20Z | |
| dc.date.created | 2017-03-15 | |
| dc.description.abstract | En la búsqueda de nuevos combustibles, se han adelantado investigaciones en la obtención de opciones amigables con el ambiente que permitan, entre otros aspectos, la reducción de tiempos en los procesos y de subproductos, enfocándose en el aumento de la producción. En la actualidad el biodiesel, en comparación con los combustibles derivados del petróleo, es considerado una opción amigable con el medioambiente gracias a sus bajas emisiones de CO2, por su biodegradabilidad, su alto número de cetano, su alta eficiencia en la combustión y sus bajos contenidos de sulfuros, haciéndolo competitivo en el mercado de los combustibles. Con esto en mente, en el presente trabajo se realizara el estudio de un catalizador que permitan incrementar la actividad de la reacción mediante un proceso de catálisis heterogénea, buscando además su reutilización en procesos posteriores, todo esto a partir de aceite de palma. | spa |
| dc.format | ||
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | instname:Universidad Libre | spa |
| dc.identifier.reponame | reponame:Repositorio Institucional Universidad Libre | spa |
| dc.identifier.uri | https://hdl.handle.net/10901/10445 | |
| dc.language.iso | spa | |
| dc.relation.references | Abdullah, A. Z., Razali, N., & Lee, K. T. (2009). Optimization of mesoporous K/SBA15 catalyzed transesterification of palm oil using response surface methodology. Fuel Processing Technology, 90(7-8), 958-964. doi: 10.1016/j.fuproc.2009.03.023 | Eng |
| dc.relation.references | AENOR. (2011). UNE-EN_14103=2011 - FAMES. ESPAÑA: AENOR. | Spa |
| dc.relation.references | Aransiola, E. F., Ojumu, T. V., Oyekola, O. O., Madzimbamuto, T. F., & IkhuOmoregbe, D. I. O. (2014). A review of current technology for biodiesel production: State of the art. Biomass and Bioenergy, 61, 276-297. doi: 10.1016/j.biombioe.2013.11.014 | Eng |
| dc.relation.references | Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., & Sulaiman, N. M. N. (2013). The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19(1), 14-26. doi: http://dx.doi.org/10.1016/j.jiec.2012.07.009 | Eng |
| dc.relation.references | Avhad, M. R., & Marchetti, J. M. (2015). A review on recent advancement in catalytic materials for biodiesel production. Renewable and Sustainable Energy Reviews, 50, 696-718. doi: 10.1016/j.rser.2015.05.038 | Eng |
| dc.relation.references | Avhad, M. R., Sánchez, M., Peña, E., Bouaid, A., Martínez, M., Aracil, J., & Marchetti, J. M. (2016). Renewable production of value-added jojobyl alcohols and biodiesel using a naturally-derived heterogeneous green catalyst. Fuel, 179, 332-338. doi: http://dx.doi.org/10.1016/j.fuel.2016.03.107 | Eng |
| dc.relation.references | Bamwenda, G. R., Tsubota, S., Nakamura, T., & Haruta, M. (1997). The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catalysis Letters, 44(1), 83-87. doi: 10.1023/A:1018925008633 | Eng |
| dc.relation.references | Banković-Ilić, I. B., Stojković, I. J., Stamenković, O. S., Veljkovic, V. B., & Hung, Y.- T. (2014). Waste animal fats as feedstocks for biodiesel production. Renewable and Sustainable Energy Reviews, 32, 238-254. doi: http://dx.doi.org/10.1016/j.rser.2014.01.038 | Eng |
| dc.relation.references | Baroutian, S., Aroua, M. K., Raman, A. A. A., & Sulaiman, N. M. N. (2010). Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil. Fuel Processing Technology, 91(11), 1378- 1385. doi: 10.1016/j.fuproc.2010.05.009 | Eng |
| dc.relation.references | Basumatary, S. (2013). Transesterification with heterogeneous catalyst in production of biodiesel_A REVIEW. Journal of Chemical and Pharmaceutical Research,, 5(1), 7. | Eng |
| dc.relation.references | Catalysis for Alternative Energy Generation. (2012). (L. Guczi & A. Erdôhelyi Eds. 1 ed.): Springer-Verlag New York. | Eng |
| dc.relation.references | COLOMBIA, F. N. D. B. D. (2016). http://www.fedebiocombustibles.com. Retrieved 05/2016, 2016, from http://www.fedebiocombustibles.com/nota-web-id923.htm | Eng |
| dc.relation.references | Corma, A., Fornés, V., Martín-Aranda, R. M., García, H., & Primo, J. (1990). Zeolites as base catalysts: Condensation of aldehydes with derivatives of malonic esters. Applied Catalysis, 59(1), 237-248. doi: http://dx.doi.org/10.1016/S0166-9834(00)82201-0 | Eng |
| dc.relation.references | CORPORATION, O. L. (2016). ORIGIN LAB. Retrieved 28/07, 2016 | Eng |
| dc.relation.references | COUNCIL, W. E. (2016). https://www.worldenergy.org/. Retrieved 07/2016, 2016, from https://www.worldenergy.org/publications/2016/world-energy-trilemma2016-defining-measures-to-accelerate-the-energy-transition/ | Eng |
| dc.relation.references | Chen, H., Peng, B., Wang, D., & Wang, J. (2007). Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts. Frontiers of Chemical Engineering in China, 1(1), 11-15. doi: 10.1007/s11705-007-0003- y | Eng |
| dc.relation.references | de Almeida, R. M., Noda, L. K., Gonçalves, N. S., Meneghetti, S. M. P., & Meneghetti, M. R. (2008). Transesterification reaction of vegetable oils, using superacid sulfated TiO2–base catalysts. Applied Catalysis A: General, 347(1), 100-105. doi: 10.1016/j.apcata.2008.06.006 | Eng |
| dc.relation.references | Dias, J. M., Alvim-Ferraz, M. C. M., & Almeida, M. F. (2008). Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel, 87(17–18), 3572-3578. doi: http://dx.doi.org/10.1016/j.fuel.2008.06.014 | Eng |
| dc.relation.references | DROGUETT, S. E. (1983). ELEMENTOS DE CATÁLISIS HETEROGÉNEA (1983 ed., Vol. 26, pp. 116). WAHINGTON D.C.: SECRETARÍA GENERAL DE LA OEA. | Spa |
| dc.relation.references | Encinar, J. M., González, J. F., & Rodríguez-Reinares, A. (2007). Ethanolysis of used frying oil. Biodiesel preparation and characterization. Fuel Processing Technology, 88(5), 513-522. doi: 10.1016/j.fuproc.2007.01.002 | Eng |
| dc.relation.references | Farobie, O., & Matsumura, Y. (2015). Biodiesel Production in Supercritical Methanol Using a Novel Spiral Reactor. Procedia Environmental Sciences, 28, 204- 213. doi: http://dx.doi.org/10.1016/j.proenv.2015.07.027 | Eng |
| dc.relation.references | FEDEBIOCOMBUSTIBLES (Producer). (2016, Agosto 10). WWW.FEDEBIOCOMBUSTIBLES.COM. Retrieved from http://www.fedebiocombustibles.com/nota-web-id-923.htm | Spa |
| dc.relation.references | FOGLER, H. S. (2008). ELEMENTOS DE INGENIERIA DE LAS REACCIONES QUIMICAS (4 ed.): PRENTICE HALL | Spa |
| dc.relation.references | García-Moreno, P. J., Khanum, M., Guadix, A., & Guadix, E. M. (2014). Optimization of biodiesel production from waste fish oil. Renewable Energy, 68, 618-624. doi: http://dx.doi.org/10.1016/j.renene.2014.03.014 | Eng |
| dc.relation.references | Guldhe, A., Singh, B., Mutanda, T., Permaul, K., & Bux, F. (2015). Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Renewable and Sustainable Energy Reviews, 41, 1447-1464. doi: 10.1016/j.rser.2014.09.035 | Eng |
| dc.relation.references | Hamze, H., Akia, M., & Yazdani, F. (2015). Optimization of biodiesel production from the waste cooking oil using response surface methodology. Process Safety and Environmental Protection, 94, 1-10. doi: 10.1016/j.psep.2014.12.005 | Eng |
| dc.relation.references | HATTORI, H. (2010). Solid Base Catalysts_Fundamentals and Applications. Catalysts in Petroleum Refining & Petrochemicals, 11. | Eng |
| dc.relation.references | Hernández-Hipólito, P., García-Castillejos, M., Martínez-Klimova, E., Juárez-Flores, N., Gómez-Cortés, A., & Klimova, T. E. (2014). Biodiesel production with nanotubular sodium titanate as a catalyst. Catalysis Today, 220–222, 4-11. doi: http://dx.doi.org/10.1016/j.cattod.2013.09.003 | Eng |
| dc.relation.references | Hernández-Hipólito, P., Juárez-Flores, N., Martínez-Klimova, E., Gómez-Cortés, A., Bokhimi, X., Escobar-Alarcón, L., & Klimova, T. E. (2015). Novel heterogeneous basic catalysts for biodiesel production: Sodium titanate nanotubes doped with potassium. Catalysis Today, 250, 187-196. doi: http://dx.doi.org/10.1016/j.cattod.2014.03.025 | Eng |
| dc.relation.references | Ho, Y. F., Chu, Y. S., & Ko, A.-N. (2002). Preparation and characterization of Al2O3- MgO mixed oxides. Reaction Kinetics and Catalysis Letters, 77(1), 189-195. doi: 10.1023/A:1020320709655 | Eng |
| dc.relation.references | Hu, Y. C., Dai, C. L., & Hsu, C. C. (2014). Titanium dioxide nanoparticle humidity microsensors integrated with circuitry on-a-chip. Sensors (Basel), 14(3), 4177-4188. doi: 10.3390/s140304177 | Eng |
| dc.relation.references | Ikenna C. Emeji, A. S. A., Jalama Kalala, and Ambali S. Abdulkareem. (2015, JULY 1-3). Optimization and Characterization of Biofuel from Waste Cooking Oil, LONDON U.K. | Eng |
| dc.relation.references | Jaliliannosrati, H., Amin, N. A., Talebian-Kiakalaieh, A., & Noshadi, I. (2013). Microwave assisted biodiesel production from Jatropha curcas L. seed by two-step in situ process: optimization using response surface methodology. Bioresour Technol, 136, 565-573. doi: 10.1016/j.biortech.2013.02.078 | Eng |
| dc.relation.references | Jiang, J.-J., & Tan, C.-S. (2012). Biodiesel production from coconut oil in supercritical methanol in the presence of cosolvent. Journal of the Taiwan Institute of Chemical Engineers, 43(1), 102-107. doi: http://dx.doi.org/10.1016/j.jtice.2011.07.004 | Eng |
| dc.relation.references | Jitputti, J., Kitiyanan, B., Rangsunvigit, P., Bunyakiat, K., Attanatho, L., & Jenvanitpanjakul, P. (2006). Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal, 116(1), 61-66. doi: http://dx.doi.org/10.1016/j.cej.2005.09.025 | Eng |
| dc.relation.references | Kafuku, G., & Mbarawa, M. (2010). Biodiesel production from Croton megalocarpus oil and its process optimization. Fuel, 89(9), 2556-2560. doi: http://dx.doi.org/10.1016/j.fuel.2010.03.039 | Eng |
| dc.relation.references | Karmakar, A., Karmakar, S., & Mukherjee, S. (2010). Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol, 101(19), 7201-7210. doi: http://dx.doi.org/10.1016/j.biortech.2010.04.079 | Eng |
| dc.relation.references | Kibazohi, O., & Sangwan, R. S. (2011). Vegetable oil production potential from Jatropha curcas, Croton megalocarpus, Aleurites moluccana, Moringa oleifera and Pachira glabra: Assessment of renewable energy resources for bio-energy production in Africa. Biomass and Bioenergy, 35(3), 1352-1356. doi: http://dx.doi.org/10.1016/j.biombioe.2010.12.048 | Eng |
| dc.relation.references | Knothe, G., Krahl, J., & Van Gerpen, J. (2010). The Biodiesel Handbook AOCS Press. | Spa |
| dc.relation.references | Lee, A. F., Bennett, J. A., Manayil, J. C., & Wilson, K. (2014). Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chemical Society Reviews, 43(22), 7887-7916. doi: 10.1039/C4CS00189C | Eng |
| dc.relation.references | Liang, X., Gao, S., Yang, J., & He, M. (2009). Highly efficient procedure for the transesterification of vegetable oil. Renewable Energy, 34(10), 2215-2217. doi: 10.1016/j.renene.2009.01.009 | Eng |
| dc.relation.references | Lin, L., Cunshan, Z., Vittayapadung, S., Xiangqian, S., & Mingdong, D. (2011). Opportunities and challenges for biodiesel fuel. Applied Energy, 88(4), 1020- 1031. doi: http://dx.doi.org/10.1016/j.apenergy.2010.09.029 | Eng |
| dc.relation.references | Liu, X., He, H., Wang, Y., Zhu, S., & Piao, X. (2008). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87(2), 216-221. doi: http://dx.doi.org/10.1016/j.fuel.2007.04.013 | Eng |
| dc.relation.references | Meher, L., Vidyasagar, D., & Naik, S. (2006). Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews, 10(3), 248-268. doi: 10.1016/j.rser.2004.09.002 | Eng |
| dc.relation.references | Narasimharao, K., Lee, A., & Wilson, K. (2007). Catalysts in Production of Biodiesel: A Review. Journal of Biobased Materials and Bioenergy, 1(1), 19-30. doi: 10.1166/jbmb.2007.002 | Eng |
| dc.relation.references | Nasaruddin, R. R., Alam, M. Z., & Jami, M. S. (2014). Evaluation of solvent system for the enzymatic synthesis of ethanol-based biodiesel from sludge palm oil (SPO). Bioresour Technol, 154, 155-161. doi: http://dx.doi.org/10.1016/j.biortech.2013.11.095 | Eng |
| dc.relation.references | Peng, B.-X., Shu, Q., Wang, J.-F., Wang, G.-R., Wang, D.-Z., & Han, M.-H. (2008). Biodiesel production from waste oil feedstocks by solid acid catalysis. Process Safety and Environmental Protection, 86(6), 441-447. doi: http://dx.doi.org/10.1016/j.psep.2008.05.003 | Eng |
| dc.relation.references | PORTAFOLIO. (2014). Colombia, cuarto productor de aceite de palma en el mundo. http://www.portafolio.co/. Retrieved from http://www.portafolio.co/economia/finanzas/colombia-cuarto-productoraceite-palma-mundo-59140 website: | Spa |
| dc.relation.references | Ranganathan, S. V., Narasimhan, S. L., & Muthukumar, K. (2008). An overview of enzymatic production of biodiesel. Bioresour Technol, 99(10), 3975-3981. doi: http://dx.doi.org/10.1016/j.biortech.2007.04.060 | Eng |
| dc.relation.references | Razack, S. A., & Duraiarasan, S. (2016). Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme. Waste Manag, 47(Pt A), 98-104. doi: 10.1016/j.wasman.2015.07.036 | Eng |
| dc.relation.references | Salinas, D., Araya, P., & Guerrero, S. (2012a). Study of potassium-supported TiO2 catalysts for the production of biodiesel. Applied Catalysis B: Environmental, 117-118, 260-267. doi: 10.1016/j.apcatb.2012.01.016 | Eng |
| dc.relation.references | Salinas, D., Araya, P., & Guerrero, S. (2012b). Study of potassium-supported TiO2 catalysts for the production of biodiesel. Applied Catalysis B: Environmental, 117–118, 260-267. doi: http://dx.doi.org/10.1016/j.apcatb.2012.01.016 | Eng |
| dc.relation.references | Salinas, D., Guerrero, S., & Araya, P. (2010). Transesterification of canola oil on potassium-supported TiO2 catalysts. Catalysis Communications, 11(8), 773- 777. doi: http://dx.doi.org/10.1016/j.catcom.2010.02.013 | Eng |
| dc.relation.references | Salinas, D., Guerrero, S., Cross, A., Araya, P., & Wolf, E. E. (2016). Potassium titanate for the production of biodiesel. Fuel, 166, 237-244. doi: 10.1016/j.fuel.2015.10.127 | Eng |
| dc.relation.references | Shah, P. R., & Ganesh, A. (2016). A comparative study on influence of fuel additives with edible and non-edible vegetable oil based on fuel characterization and engine characteristics of diesel engine. Applied Thermal Engineering, 102, 800-812. doi: http://dx.doi.org/10.1016/j.applthermaleng.2016.03.128 | Eng |
| dc.relation.references | Shahid, E. M., & Jamal, Y. (2011). Production of biodiesel: A technical review. Renewable and Sustainable Energy Reviews, 15(9), 4732-4745. doi: http://dx.doi.org/10.1016/j.rser.2011.07.079 | Eng |
| dc.relation.references | Singh, S., & Patel, A. (2014). 12-Tungstophosphoric acid supported on mesoporous molecular material: synthesis, characterization and performance in biodiesel production. Journal of Cleaner Production, 72, 46-56. doi: http://dx.doi.org/10.1016/j.jclepro.2014.02.057 | Eng |
| dc.relation.references | Singh, S. P., & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14(1), 200- 216. doi: http://dx.doi.org/10.1016/j.rser.2009.07.017 | Eng |
| dc.relation.references | STATISTA. (2016). www.statista.com. Retrieved 19/02/2016, 2016, from https://www.statista.com/statistics/222066/projected-global-energyconsumption-by-source/ | Eng |
| dc.relation.references | SYAKIRA, N., & SULAIMAN, S. (2016). OVERVIEW OF CATALYSTS IN BIODIESEL PRODUCTION. ARPN Journal of Engineering and Applied Sciences, 11(1), 439-448. | Eng |
| dc.relation.references | Teo, S. H., Islam, A., & Taufiq-Yap, Y. H. (2016). Algae derived biodiesel using nanocatalytic transesterification process. Chemical Engineering Research and Design, 111, 362-370. doi: http://dx.doi.org/10.1016/j.cherd.2016.04.012 | Eng |
| dc.relation.references | USDE. (2016). U.S DEPARMENT OF ENERGY. Retrieved 20/02/2016, 2016, from http://www.energy.gov/eere/bioenergy/algal-biofuels | Eng |
| dc.relation.references | Vicente, G., Martinez, M., & Aracil, J. (2004). Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol, 92(3), 297-305. doi: 10.1016/j.biortech.2003.08.014 | Eng |
| dc.relation.references | Wang, G., Xu, L., Zhang, J., Yin, T., & Han, D. (2012). Enhanced Photocatalytic Activity of Powders (P25) via Calcination Treatment. International Journal of Photoenergy, 2012, 1-9. doi: 10.1155/2012/265760 | Eng |
| dc.relation.references | Yücel, Y. (2012). Optimization of biocatalytic biodiesel production from pomace oil using response surface methodology. Fuel Processing Technology, 99, 97- 102. doi: 10.1016/j.fuproc.2012.02.008 | Eng |
| dc.relation.references | Zhang, L., Sheng, B., Xin, Z., Liu, Q., & Sun, S. (2010). Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst. Bioresour Technol, 101(21), 8144-8150. doi: 10.1016/j.biortech.2010.05.069 | Eng |
| dc.relation.references | Zhang, W., Zou, L., & Wang, L. (2009). Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: A review. Applied Catalysis A: General, 371(1–2), 1-9. doi: http://dx.doi.org/10.1016/j.apcata.2009.09.038 | Eng |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
| dc.subject | Catalizador heterogéneo | spa |
| dc.subject | Dióxido de titanio | spa |
| dc.subject | Ingeniería | spa |
| dc.subject.lemb | TESIS | spa |
| dc.subject.lemb | TESIS- INGENIERÍA | spa |
| dc.subject.lemb | FACULTAD DE INGENIERÍA | spa |
| dc.subject.lemb | MAESTRÍA EN INGENIERÍA CON ÉNFASIS EN ENERGÍAS ALTERNATIVAS | spa |
| dc.subject.lemb | ACEITE DE PALMA | spa |
| dc.subject.lemb | ACEITE VEGETAL | spa |
| dc.subject.lemb | PRODUCTO VEGETAL | spa |
| dc.subject.proposal | Combustibles | spa |
| dc.subject.proposal | Medio ambiente | spa |
| dc.subject.proposal | Aceite de palma | spa |
| dc.title | Evaluación de un catalizador heterogéneo basado en dióxido de titanio y potasio para la producción de biodiesel de palma | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | spa |
| dc.type.local | Tesis de Maestría | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- TRABAJO FINAL RRIOS - EVALUACION DE CATALIZADOR HETEROGENEO.pdf
- Tamaño:
- 2.38 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- RiosLinaresRicardoAugusto2017
Cargando...
- Nombre:
- Rios L.pdf
- Tamaño:
- 471.37 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: