Evaluación de un catalizador heterogéneo basado en dióxido de titanio y potasio para la producción de biodiesel de palma

dc.contributor.advisorSuarez Escobar, Andrés Felipe
dc.contributor.authorRios Linares, Ricardo Augusto
dc.coverage.spatialBogotáspa
dc.date.accessioned2017-09-14T20:30:20Z
dc.date.available2017-09-14T20:30:20Z
dc.date.created2017-03-15
dc.description.abstractEn la búsqueda de nuevos combustibles, se han adelantado investigaciones en la obtención de opciones amigables con el ambiente que permitan, entre otros aspectos, la reducción de tiempos en los procesos y de subproductos, enfocándose en el aumento de la producción. En la actualidad el biodiesel, en comparación con los combustibles derivados del petróleo, es considerado una opción amigable con el medioambiente gracias a sus bajas emisiones de CO2, por su biodegradabilidad, su alto número de cetano, su alta eficiencia en la combustión y sus bajos contenidos de sulfuros, haciéndolo competitivo en el mercado de los combustibles. Con esto en mente, en el presente trabajo se realizara el estudio de un catalizador que permitan incrementar la actividad de la reacción mediante un proceso de catálisis heterogénea, buscando además su reutilización en procesos posteriores, todo esto a partir de aceite de palma.spa
dc.formatPDF
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad Librespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Librespa
dc.identifier.urihttps://hdl.handle.net/10901/10445
dc.language.isospa
dc.relation.referencesAbdullah, A. Z., Razali, N., & Lee, K. T. (2009). Optimization of mesoporous K/SBA15 catalyzed transesterification of palm oil using response surface methodology. Fuel Processing Technology, 90(7-8), 958-964. doi: 10.1016/j.fuproc.2009.03.023Eng
dc.relation.referencesAENOR. (2011). UNE-EN_14103=2011 - FAMES. ESPAÑA: AENOR.Spa
dc.relation.referencesAransiola, E. F., Ojumu, T. V., Oyekola, O. O., Madzimbamuto, T. F., & IkhuOmoregbe, D. I. O. (2014). A review of current technology for biodiesel production: State of the art. Biomass and Bioenergy, 61, 276-297. doi: 10.1016/j.biombioe.2013.11.014Eng
dc.relation.referencesAtadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., & Sulaiman, N. M. N. (2013). The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19(1), 14-26. doi: http://dx.doi.org/10.1016/j.jiec.2012.07.009Eng
dc.relation.referencesAvhad, M. R., & Marchetti, J. M. (2015). A review on recent advancement in catalytic materials for biodiesel production. Renewable and Sustainable Energy Reviews, 50, 696-718. doi: 10.1016/j.rser.2015.05.038Eng
dc.relation.referencesAvhad, M. R., Sánchez, M., Peña, E., Bouaid, A., Martínez, M., Aracil, J., & Marchetti, J. M. (2016). Renewable production of value-added jojobyl alcohols and biodiesel using a naturally-derived heterogeneous green catalyst. Fuel, 179, 332-338. doi: http://dx.doi.org/10.1016/j.fuel.2016.03.107Eng
dc.relation.referencesBamwenda, G. R., Tsubota, S., Nakamura, T., & Haruta, M. (1997). The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catalysis Letters, 44(1), 83-87. doi: 10.1023/A:1018925008633Eng
dc.relation.referencesBanković-Ilić, I. B., Stojković, I. J., Stamenković, O. S., Veljkovic, V. B., & Hung, Y.- T. (2014). Waste animal fats as feedstocks for biodiesel production. Renewable and Sustainable Energy Reviews, 32, 238-254. doi: http://dx.doi.org/10.1016/j.rser.2014.01.038Eng
dc.relation.referencesBaroutian, S., Aroua, M. K., Raman, A. A. A., & Sulaiman, N. M. N. (2010). Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil. Fuel Processing Technology, 91(11), 1378- 1385. doi: 10.1016/j.fuproc.2010.05.009Eng
dc.relation.referencesBasumatary, S. (2013). Transesterification with heterogeneous catalyst in production of biodiesel_A REVIEW. Journal of Chemical and Pharmaceutical Research,, 5(1), 7.Eng
dc.relation.referencesCatalysis for Alternative Energy Generation. (2012). (L. Guczi & A. Erdôhelyi Eds. 1 ed.): Springer-Verlag New York.Eng
dc.relation.referencesCOLOMBIA, F. N. D. B. D. (2016). http://www.fedebiocombustibles.com. Retrieved 05/2016, 2016, from http://www.fedebiocombustibles.com/nota-web-id923.htmEng
dc.relation.referencesCorma, A., Fornés, V., Martín-Aranda, R. M., García, H., & Primo, J. (1990). Zeolites as base catalysts: Condensation of aldehydes with derivatives of malonic esters. Applied Catalysis, 59(1), 237-248. doi: http://dx.doi.org/10.1016/S0166-9834(00)82201-0Eng
dc.relation.referencesCORPORATION, O. L. (2016). ORIGIN LAB. Retrieved 28/07, 2016Eng
dc.relation.referencesCOUNCIL, W. E. (2016). https://www.worldenergy.org/. Retrieved 07/2016, 2016, from https://www.worldenergy.org/publications/2016/world-energy-trilemma2016-defining-measures-to-accelerate-the-energy-transition/Eng
dc.relation.referencesChen, H., Peng, B., Wang, D., & Wang, J. (2007). Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts. Frontiers of Chemical Engineering in China, 1(1), 11-15. doi: 10.1007/s11705-007-0003- yEng
dc.relation.referencesde Almeida, R. M., Noda, L. K., Gonçalves, N. S., Meneghetti, S. M. P., & Meneghetti, M. R. (2008). Transesterification reaction of vegetable oils, using superacid sulfated TiO2–base catalysts. Applied Catalysis A: General, 347(1), 100-105. doi: 10.1016/j.apcata.2008.06.006Eng
dc.relation.referencesDias, J. M., Alvim-Ferraz, M. C. M., & Almeida, M. F. (2008). Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel, 87(17–18), 3572-3578. doi: http://dx.doi.org/10.1016/j.fuel.2008.06.014Eng
dc.relation.referencesDROGUETT, S. E. (1983). ELEMENTOS DE CATÁLISIS HETEROGÉNEA (1983 ed., Vol. 26, pp. 116). WAHINGTON D.C.: SECRETARÍA GENERAL DE LA OEA.Spa
dc.relation.referencesEncinar, J. M., González, J. F., & Rodríguez-Reinares, A. (2007). Ethanolysis of used frying oil. Biodiesel preparation and characterization. Fuel Processing Technology, 88(5), 513-522. doi: 10.1016/j.fuproc.2007.01.002Eng
dc.relation.referencesFarobie, O., & Matsumura, Y. (2015). Biodiesel Production in Supercritical Methanol Using a Novel Spiral Reactor. Procedia Environmental Sciences, 28, 204- 213. doi: http://dx.doi.org/10.1016/j.proenv.2015.07.027Eng
dc.relation.referencesFEDEBIOCOMBUSTIBLES (Producer). (2016, Agosto 10). WWW.FEDEBIOCOMBUSTIBLES.COM. Retrieved from http://www.fedebiocombustibles.com/nota-web-id-923.htmSpa
dc.relation.referencesFOGLER, H. S. (2008). ELEMENTOS DE INGENIERIA DE LAS REACCIONES QUIMICAS (4 ed.): PRENTICE HALLSpa
dc.relation.referencesGarcía-Moreno, P. J., Khanum, M., Guadix, A., & Guadix, E. M. (2014). Optimization of biodiesel production from waste fish oil. Renewable Energy, 68, 618-624. doi: http://dx.doi.org/10.1016/j.renene.2014.03.014Eng
dc.relation.referencesGuldhe, A., Singh, B., Mutanda, T., Permaul, K., & Bux, F. (2015). Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Renewable and Sustainable Energy Reviews, 41, 1447-1464. doi: 10.1016/j.rser.2014.09.035Eng
dc.relation.referencesHamze, H., Akia, M., & Yazdani, F. (2015). Optimization of biodiesel production from the waste cooking oil using response surface methodology. Process Safety and Environmental Protection, 94, 1-10. doi: 10.1016/j.psep.2014.12.005Eng
dc.relation.referencesHATTORI, H. (2010). Solid Base Catalysts_Fundamentals and Applications. Catalysts in Petroleum Refining & Petrochemicals, 11.Eng
dc.relation.referencesHernández-Hipólito, P., García-Castillejos, M., Martínez-Klimova, E., Juárez-Flores, N., Gómez-Cortés, A., & Klimova, T. E. (2014). Biodiesel production with nanotubular sodium titanate as a catalyst. Catalysis Today, 220–222, 4-11. doi: http://dx.doi.org/10.1016/j.cattod.2013.09.003Eng
dc.relation.referencesHernández-Hipólito, P., Juárez-Flores, N., Martínez-Klimova, E., Gómez-Cortés, A., Bokhimi, X., Escobar-Alarcón, L., & Klimova, T. E. (2015). Novel heterogeneous basic catalysts for biodiesel production: Sodium titanate nanotubes doped with potassium. Catalysis Today, 250, 187-196. doi: http://dx.doi.org/10.1016/j.cattod.2014.03.025Eng
dc.relation.referencesHo, Y. F., Chu, Y. S., & Ko, A.-N. (2002). Preparation and characterization of Al2O3- MgO mixed oxides. Reaction Kinetics and Catalysis Letters, 77(1), 189-195. doi: 10.1023/A:1020320709655Eng
dc.relation.referencesHu, Y. C., Dai, C. L., & Hsu, C. C. (2014). Titanium dioxide nanoparticle humidity microsensors integrated with circuitry on-a-chip. Sensors (Basel), 14(3), 4177-4188. doi: 10.3390/s140304177Eng
dc.relation.referencesIkenna C. Emeji, A. S. A., Jalama Kalala, and Ambali S. Abdulkareem. (2015, JULY 1-3). Optimization and Characterization of Biofuel from Waste Cooking Oil, LONDON U.K.Eng
dc.relation.referencesJaliliannosrati, H., Amin, N. A., Talebian-Kiakalaieh, A., & Noshadi, I. (2013). Microwave assisted biodiesel production from Jatropha curcas L. seed by two-step in situ process: optimization using response surface methodology. Bioresour Technol, 136, 565-573. doi: 10.1016/j.biortech.2013.02.078Eng
dc.relation.referencesJiang, J.-J., & Tan, C.-S. (2012). Biodiesel production from coconut oil in supercritical methanol in the presence of cosolvent. Journal of the Taiwan Institute of Chemical Engineers, 43(1), 102-107. doi: http://dx.doi.org/10.1016/j.jtice.2011.07.004Eng
dc.relation.referencesJitputti, J., Kitiyanan, B., Rangsunvigit, P., Bunyakiat, K., Attanatho, L., & Jenvanitpanjakul, P. (2006). Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal, 116(1), 61-66. doi: http://dx.doi.org/10.1016/j.cej.2005.09.025Eng
dc.relation.referencesKafuku, G., & Mbarawa, M. (2010). Biodiesel production from Croton megalocarpus oil and its process optimization. Fuel, 89(9), 2556-2560. doi: http://dx.doi.org/10.1016/j.fuel.2010.03.039Eng
dc.relation.referencesKarmakar, A., Karmakar, S., & Mukherjee, S. (2010). Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol, 101(19), 7201-7210. doi: http://dx.doi.org/10.1016/j.biortech.2010.04.079Eng
dc.relation.referencesKibazohi, O., & Sangwan, R. S. (2011). Vegetable oil production potential from Jatropha curcas, Croton megalocarpus, Aleurites moluccana, Moringa oleifera and Pachira glabra: Assessment of renewable energy resources for bio-energy production in Africa. Biomass and Bioenergy, 35(3), 1352-1356. doi: http://dx.doi.org/10.1016/j.biombioe.2010.12.048Eng
dc.relation.referencesKnothe, G., Krahl, J., & Van Gerpen, J. (2010). The Biodiesel Handbook AOCS Press.Spa
dc.relation.referencesLee, A. F., Bennett, J. A., Manayil, J. C., & Wilson, K. (2014). Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chemical Society Reviews, 43(22), 7887-7916. doi: 10.1039/C4CS00189CEng
dc.relation.referencesLiang, X., Gao, S., Yang, J., & He, M. (2009). Highly efficient procedure for the transesterification of vegetable oil. Renewable Energy, 34(10), 2215-2217. doi: 10.1016/j.renene.2009.01.009Eng
dc.relation.referencesLin, L., Cunshan, Z., Vittayapadung, S., Xiangqian, S., & Mingdong, D. (2011). Opportunities and challenges for biodiesel fuel. Applied Energy, 88(4), 1020- 1031. doi: http://dx.doi.org/10.1016/j.apenergy.2010.09.029Eng
dc.relation.referencesLiu, X., He, H., Wang, Y., Zhu, S., & Piao, X. (2008). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87(2), 216-221. doi: http://dx.doi.org/10.1016/j.fuel.2007.04.013Eng
dc.relation.referencesMeher, L., Vidyasagar, D., & Naik, S. (2006). Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews, 10(3), 248-268. doi: 10.1016/j.rser.2004.09.002Eng
dc.relation.referencesNarasimharao, K., Lee, A., & Wilson, K. (2007). Catalysts in Production of Biodiesel: A Review. Journal of Biobased Materials and Bioenergy, 1(1), 19-30. doi: 10.1166/jbmb.2007.002Eng
dc.relation.referencesNasaruddin, R. R., Alam, M. Z., & Jami, M. S. (2014). Evaluation of solvent system for the enzymatic synthesis of ethanol-based biodiesel from sludge palm oil (SPO). Bioresour Technol, 154, 155-161. doi: http://dx.doi.org/10.1016/j.biortech.2013.11.095Eng
dc.relation.referencesPeng, B.-X., Shu, Q., Wang, J.-F., Wang, G.-R., Wang, D.-Z., & Han, M.-H. (2008). Biodiesel production from waste oil feedstocks by solid acid catalysis. Process Safety and Environmental Protection, 86(6), 441-447. doi: http://dx.doi.org/10.1016/j.psep.2008.05.003Eng
dc.relation.referencesPORTAFOLIO. (2014). Colombia, cuarto productor de aceite de palma en el mundo. http://www.portafolio.co/. Retrieved from http://www.portafolio.co/economia/finanzas/colombia-cuarto-productoraceite-palma-mundo-59140 website:Spa
dc.relation.referencesRanganathan, S. V., Narasimhan, S. L., & Muthukumar, K. (2008). An overview of enzymatic production of biodiesel. Bioresour Technol, 99(10), 3975-3981. doi: http://dx.doi.org/10.1016/j.biortech.2007.04.060Eng
dc.relation.referencesRazack, S. A., & Duraiarasan, S. (2016). Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme. Waste Manag, 47(Pt A), 98-104. doi: 10.1016/j.wasman.2015.07.036Eng
dc.relation.referencesSalinas, D., Araya, P., & Guerrero, S. (2012a). Study of potassium-supported TiO2 catalysts for the production of biodiesel. Applied Catalysis B: Environmental, 117-118, 260-267. doi: 10.1016/j.apcatb.2012.01.016Eng
dc.relation.referencesSalinas, D., Araya, P., & Guerrero, S. (2012b). Study of potassium-supported TiO2 catalysts for the production of biodiesel. Applied Catalysis B: Environmental, 117–118, 260-267. doi: http://dx.doi.org/10.1016/j.apcatb.2012.01.016Eng
dc.relation.referencesSalinas, D., Guerrero, S., & Araya, P. (2010). Transesterification of canola oil on potassium-supported TiO2 catalysts. Catalysis Communications, 11(8), 773- 777. doi: http://dx.doi.org/10.1016/j.catcom.2010.02.013Eng
dc.relation.referencesSalinas, D., Guerrero, S., Cross, A., Araya, P., & Wolf, E. E. (2016). Potassium titanate for the production of biodiesel. Fuel, 166, 237-244. doi: 10.1016/j.fuel.2015.10.127Eng
dc.relation.referencesShah, P. R., & Ganesh, A. (2016). A comparative study on influence of fuel additives with edible and non-edible vegetable oil based on fuel characterization and engine characteristics of diesel engine. Applied Thermal Engineering, 102, 800-812. doi: http://dx.doi.org/10.1016/j.applthermaleng.2016.03.128Eng
dc.relation.referencesShahid, E. M., & Jamal, Y. (2011). Production of biodiesel: A technical review. Renewable and Sustainable Energy Reviews, 15(9), 4732-4745. doi: http://dx.doi.org/10.1016/j.rser.2011.07.079Eng
dc.relation.referencesSingh, S., & Patel, A. (2014). 12-Tungstophosphoric acid supported on mesoporous molecular material: synthesis, characterization and performance in biodiesel production. Journal of Cleaner Production, 72, 46-56. doi: http://dx.doi.org/10.1016/j.jclepro.2014.02.057Eng
dc.relation.referencesSingh, S. P., & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14(1), 200- 216. doi: http://dx.doi.org/10.1016/j.rser.2009.07.017Eng
dc.relation.referencesSTATISTA. (2016). www.statista.com. Retrieved 19/02/2016, 2016, from https://www.statista.com/statistics/222066/projected-global-energyconsumption-by-source/Eng
dc.relation.referencesSYAKIRA, N., & SULAIMAN, S. (2016). OVERVIEW OF CATALYSTS IN BIODIESEL PRODUCTION. ARPN Journal of Engineering and Applied Sciences, 11(1), 439-448.Eng
dc.relation.referencesTeo, S. H., Islam, A., & Taufiq-Yap, Y. H. (2016). Algae derived biodiesel using nanocatalytic transesterification process. Chemical Engineering Research and Design, 111, 362-370. doi: http://dx.doi.org/10.1016/j.cherd.2016.04.012Eng
dc.relation.referencesUSDE. (2016). U.S DEPARMENT OF ENERGY. Retrieved 20/02/2016, 2016, from http://www.energy.gov/eere/bioenergy/algal-biofuelsEng
dc.relation.referencesVicente, G., Martinez, M., & Aracil, J. (2004). Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol, 92(3), 297-305. doi: 10.1016/j.biortech.2003.08.014Eng
dc.relation.referencesWang, G., Xu, L., Zhang, J., Yin, T., & Han, D. (2012). Enhanced Photocatalytic Activity of Powders (P25) via Calcination Treatment. International Journal of Photoenergy, 2012, 1-9. doi: 10.1155/2012/265760Eng
dc.relation.referencesYücel, Y. (2012). Optimization of biocatalytic biodiesel production from pomace oil using response surface methodology. Fuel Processing Technology, 99, 97- 102. doi: 10.1016/j.fuproc.2012.02.008Eng
dc.relation.referencesZhang, L., Sheng, B., Xin, Z., Liu, Q., & Sun, S. (2010). Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst. Bioresour Technol, 101(21), 8144-8150. doi: 10.1016/j.biortech.2010.05.069Eng
dc.relation.referencesZhang, W., Zou, L., & Wang, L. (2009). Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: A review. Applied Catalysis A: General, 371(1–2), 1-9. doi: http://dx.doi.org/10.1016/j.apcata.2009.09.038Eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subjectCatalizador heterogéneospa
dc.subjectDióxido de titaniospa
dc.subjectIngenieríaspa
dc.subject.lembTESISspa
dc.subject.lembTESIS- INGENIERÍAspa
dc.subject.lembFACULTAD DE INGENIERÍAspa
dc.subject.lembMAESTRÍA EN INGENIERÍA CON ÉNFASIS EN ENERGÍAS ALTERNATIVASspa
dc.subject.lembACEITE DE PALMAspa
dc.subject.lembACEITE VEGETALspa
dc.subject.lembPRODUCTO VEGETALspa
dc.subject.proposalCombustiblesspa
dc.subject.proposalMedio ambientespa
dc.subject.proposalAceite de palmaspa
dc.titleEvaluación de un catalizador heterogéneo basado en dióxido de titanio y potasio para la producción de biodiesel de palmaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Maestríaspa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
TRABAJO FINAL RRIOS - EVALUACION DE CATALIZADOR HETEROGENEO.pdf
Tamaño:
2.38 MB
Formato:
Adobe Portable Document Format
Descripción:
RiosLinaresRicardoAugusto2017
Cargando...
Miniatura
Nombre:
Rios L.pdf
Tamaño:
471.37 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: