Producción fotocatalitica de hidrógeno basada en el mineral arena negra como semiconductor

dc.contributor.advisorLópez Vásquez, Andrés Felipe
dc.contributor.authorReyes Gómez, Gustavo Andrés
dc.coverage.spatialBogotáspa
dc.date.accessioned2017-05-08T22:59:04Z
dc.date.available2017-05-08T22:59:04Z
dc.date.created2015
dc.description.abstractLa combustión convencional de los recursos energéticos disponibles, especialmente del carbón y los combustibles fósiles, producen una gran cantidad de dióxido de carbono (CO2) que causan el calentamiento global. Además, su consumo está aumentando rápidamente mientras que sus reservas están disminuyendo cada vez más. Una posible solución es utilizar los recursos energéticos renovables tales como energía eólica, energía geotérmica y energía solar, entre otros. El hidrógeno se ha identificado como una prometedora alternativa de energía almacenable y limpia para el futuro [1]. Éste se utiliza extensivamente como combustible porque produce un alto rendimiento energético, posee un alto poder calorífico, no contamina y se puede almacenar fácilmente [2]. El hidrógeno se obtiene principalmente mediante el reformado catalítico de hidrocarburos, que implican el tratamiento de hidrocarburos gaseosos o vaporizados con vapor a alta temperatura y alta presión sobre catalizadores con base de níquel. De hecho, casi toda la producción de hidrógeno todavía se fundamenta en materias primas fósiles generando dióxido de carbono (CO2) como subproducto, y tan sólo un 5% se produce mediante electrólisis del agua [2]. En los últimos años se ha incrementado el interés en desarrollar nuevos métodos para generar hidrógeno a partir de recursos renovables y sostenibles. La generación fotocatalítica de hidrógeno se presenta como una alternativa de producción limpia que convierte energía solar en energía química aprovechable. Métodos propuestos para tal fin aprovechan la disociación fotoelectrolítica del agua o la utilización de semiconductores suspendidos en agentes de sacrificio [3]. El dióxido de titanio (TiO2) ha sido considerado como el fotocatalizador por excelencia porque es altamente fotoactivo, barato, no tóxico, químicamente estable y ambientalmente amigable, sin embargo se puede activar solamente bajo irradiación de la luz UV (λ < 400 nm) la que es aproximadamente el 4% del espectro solar debido a su banda prohibida de energía (3.2 eV para Anatasa y 3.0 eV para Rutilo)[4].spa
dc.formatPDF
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad Librespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Librespa
dc.identifier.urihttps://hdl.handle.net/10901/9974
dc.language.isospa
dc.relation.referencesN. Rungjaroentawon, S. Onsuratoom, and S. Chavadej, “Hydrogen production from water splitting under visible light irradiation using sensitized mesoporous-assembled TiO 2 e SiO 2 mixed oxide photocatalysts,” Int. J. Hydrogen Energy, vol. 37, no. 15, pp. 11061–11071, 2012.Eng
dc.relation.referencesH. Ahmad, S. K. Kamarudin, L. J. Minggu, and M. Kassim, “Hydrogen from photo-catalytic water splitting process : A review,” Renew. Sustain. Energy Rev., vol. 43, pp. 599–610, 2015.Eng
dc.relation.referencesA. V. Korzhak, N. I. Ermokhina, A. L. Stroyuk, V. K. Bukhtiyarov, A. E. Raevskaya, V. I. Litvin, S. Y. Kuchmiy, V. G. Ilyin, and P. a. Manorik, “Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites,” J. Photochem. Photobiol. A Chem., vol. 198, no. 2–3, pp. 126–134, Aug. 2008.Eng
dc.relation.referencesT. Sreethawong, C. Junbua, and S. Chavadej, “Photocatalytic H 2 production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt / TiO 2 nanocrystal photocatalyst,” vol. 190, pp. 513–524, 2009.Eng
dc.relation.referencesA. Nada, M. Barakat, H. Hamed, N. Mohamed, and T. Veziroglu, “Studies on the photocatalytic hydrogen production using suspended modified photocatalysts,” Int. J. Hydrogen Energy, vol. 30, no. 7, pp. 687–691, Jul. 2005.Eng
dc.relation.referencesM. Ilie, B. Cojocaru, V. I. Parvulescu, and H. Garcia, “Improving TiO2 activity in photo-production of hydrogen from sugar industry wastewaters,” Int. J. Hydrogen Energy, vol. 36, no. 24, pp. 15509–15518, Dec. 2011.Eng
dc.relation.referencesA. Mills and S. Le Hunte, “An overview of semiconductor photocatalysis,” vol. 108, no. 1997, pp. 1–35, 2000.Eng
dc.relation.referencesDerbal, A.; Omeiri, S.; Bouguelia, A.; Trari, M., « Characterization of new heterosystem CuFeO2/SnO2 application to visible-light induced hydrogen evolution,» Inter J Hydrogen Energy , vol. 33, pp. 4274-4282, 2008.Eng
dc.relation.referencesBenaboud, R.;Bouvier, P.; Petit, J.P.; Wouters, Y.;Galerie, A., « Comparative study and imaging by PhotoElectroChemical techniques of oxide films thermally grown on zirconium and Zircaloy-4,» J. Nucl. Mater., vol. 360, pp. 151-158, 2007.Eng
dc.relation.referencesLitter, M.I.; Navío, J.A., «Photocatalytic properties of iron-doped titania semiconductors,» Journal of Photochemistry and Photobiology A: Chemistry , vol. 98, pp. 171-181, 1996 .Eng
dc.relation.referencesLiu, H.; Shon, H.K.; Sun, X.;Vigneswaran, S.; Nan, H. , «Preparation and characterization of visible light responsive Fe2O3–TiO2 composites,» Applied Surface Science, vol. 257, pp. 5813-5819, 2011Eng
dc.relation.referencesLi, H.; Liu, G.; Chen, S.; Liu, Q., «Novel Fe doped mesoporousTiO2 microspheres:Ultrasonic–hydrothermal synthesis, characterization, and photocatalytic properties,» Physica E , vol. 42, pp. 1844-1849, 2010.Eng
dc.relation.referencesGhorai, T.K.; Chakraborty, M.; Pramanik, P., «Photocatalytic performance of nano-photocatalyst from TiO2 and Fe2O3 by mechanochemical synthesis,» Journal of Alloys and Compounds, vol. 509, pp. 8158- 8164, 2011 .Eng
dc.relation.referencesCastro-López, C.A.; Centeno, A.; Giraldo, S.A., «Fe-modified TiO2 photocatalysts for the oxidative degradation of recalcitrant water contaminants,» Catalysis Today , vol. 157, pp. 119-124, 2010.Eng
dc.relation.referencesY. Liu, T. Qi, J. Chu, Q. Tong, and Y. Zhang, “Decomposition of ilmenite by concentrated KOH solution under atmospheric pressure,” Int. J. Miner. Process., vol. 81, no. 2, pp. 79–84, Nov. 2006.Eng
dc.relation.referencesFujishima, A.; Honda, K. , «Electrochemical photolysis of water at semiconductor electrode,» Nature, vol. 238, pp. 37-38, 1972.Eng
dc.relation.referencesKudo, A., «Photocatalysys and solar hydrogen production,» Pure Appl. Chem., vol. 79, nº 11, pp. 1917-1927, 2007.Eng
dc.relation.referencesYi, H.; Peng, T.; Ke, D.; Zan, L.; Yan, C., «Photocatalytic H2 production from methanol aqueous solution over titania nanoparticles with mesostructures,» Int. J. Hydrogen Energy, vol. 33, pp. 672-678, 2008.Eng
dc.relation.referencesLiu, J.; Sun, Y.; Li, S.; Zhao, J., «Photocatalytic hydrogen production from watel/methanol solutions over highly ordered Ag-SrTiO3 nnotube arrays,» Int. J. Hydrogen Energy, vol. 36, pp. 5811-5816, 2011.Eng
dc.relation.referencesLee, S.G.; Lee, S.; Lee, H., "Photocatalytic production of hydrogen from aqueous solution containing CN− as a hole scavenger," Applied Catalysis A: General, vol. 207, no. 1-2, pp. 1173-181, 2001.Eng
dc.relation.referencesSayama, K.; Arakawa, H.;, «Effect of Na2CO3 addition on the photocatalytic decomposition of liquid water over various semiconductors catalysis,» J. Photochem. Photobiol. A:Chem, vol. 77, nº 2-3, pp. 243-247, 1994.Eng
dc.relation.referencesArakawa, H.; Sayama, K., «Solar hydrogen production: significant effect of Na2CO3 addition on water splittingusing simple oxide semiconductor photocatalysts,» Catal. Surv. Jpn, vol. 4, pp. 75-80, 2000.Eng
dc.relation.referencesXu,Q.; Ma, Y.; Zhang, J.; Wang, X.; Feng, Z.; Li, C., «Enhancing hydrogen production activity and suppressing CO formation from photocatalytic biomass reforming on Pt/TiO2 by optimizing anatase–rutile phase structure,» Journal of Catalysis, vol. 278, nº 2, pp. 329-335, 2011.Eng
dc.relation.referencesHuang,B.S.; Chang, F.Y.; Wey, M.Y., «Photocatalytic properties of redoxtreated Pt/TiO2 photocatalysts for H2 production from an aqueous methanol solution,» International Journal of Hydrogen Energy, vol. 35, nº 15, pp. 7699- 7705, 2010.Eng
dc.relation.referencesSreethawong, Th.; Yoshikawa, S., «Impact of photochemically deposited monometallic Pt and bimetallic Pt–Au nanoparticles on photocatalytic dyesensitized H2 production activity of mesoporous-assembled TiO2–SiO2 mixed oxide nanocrystal,» Chemical Engineering Journal, vol. 197, pp. 272- 282, 2012.Eng
dc.relation.referencesChowdhury, P.; Gomaa, H.; Ray, A.K., «Factorial design analysis for dyesensitized hydrogen generation from water,» International Journal of Hydrogen Energy, vol. 36, nº 21, pp. 13442-13451, 2011.Eng
dc.relation.referencesJana, A.K., «Solar cells based on dyes,» J. Photochem. Photobiol. A:Chem , vol. 132, pp. 1-17, 2000 .Eng
dc.relation.referencesNahar, Mst.S.; Hasegawa, K.; Kagaya, S.; Kuroda, S., «comparative assessment of the efficiency of Fe-doped TiO2 prepared by two doping methods and photocatalytic degradation of phenol in domestic water suspensions,» science and Technology of Advanced Materials, vol. 8, pp. 286-291, 2007Eng
dc.relation.referencesYe, F.; Ohmori, A., «The photocatalytic activity and photo-absorption of plasma sprayed TiO2–Fe3O4 binary oxide coatings,» Surface and Coatings Technology, vol. 160, nº 1, pp. 62-67, 2002.Eng
dc.relation.references«Index of minerals,» [En línea]. Available: http://webmineral.com/jpowd/JPX/jpowd.php?target_file=Ilmenite.jpx. [Último acceso: 25 06 2012].Eng
dc.relation.referencesGutierrez P., D.N. UIS Facultad de Ingenierías Escuela de Ingeniería Metalúrgica y Ciencia de Materiales, «Disolución de la ilmenita (FeTiO3) proveniente de arenas negras, inducida por molienda de alta energía,» Bucaramanga, 2004.Spa
dc.relation.referencesG. Belardi, L. Piga, S. Quaresima, N. Shehu., « Application of physical separation methods for the upgrading of titanium dioxide contained in a fine waste,» Int. J. Miner. Process. , vol. 53, p. 145–156, 1998Eng
dc.relation.referencesSun W, Zhang S, Wang C, Liu Z, Mao Z. Enhanced photocatalytic hydrogen evolution over CaTi1−x zr x O3 composites synthesized by polymerized complex method. Catalysis Letters. 2007;119(1-2):148-53.Eng
dc.relation.referencesWang, Q.; An, N.; Chen, W.; Wang, R.; Wang, F.; Lei, Z.; Shangguan, W., «Photocatalytic water splitting into hydrogen and research on synergistic of Bi/Sm with solid solution of Bi–Sm–V photocatalyst,» International Journal of Hydrogen Energy.In Press, 2012Eng
dc.relation.referencesKatakis, D.F.; Mitsopoulou, C.; Konstantatos, J.; Vrachnou, E.; Falaras, P., «Photocatalytic splitting of water,» Journal of Photochemistry and Photobiology A: Chemistry, vol. 68, nº 3, pp. 375-388, 1992.Eng
dc.relation.referencesKanhere, P.; Zheng, J.; Chen, Z., «Visible light driven photocatalytic hydrogen evolution and photophysical properties of Bi3+ doped NaTaO3,» International Journal of Hydrogen Energy, vol. 37, nº 6, pp. 4889-4896, 2012.Eng
dc.relation.referencesWang, Q.; An, N.; Chen, W.; Wang, R.; Wang, F.; Lei, Z.; Shangguan, W., «Photocatalytic water splitting into hydrogen and research on synergistic of Bi/Sm with solid solution of Bi–SmEng
dc.relation.referencesTakeuchi, M.; Shimizu, Y.; Yamagawa, H., «Preparation of the visible light responsive N3−-doped WO3 photocatalyst by a thermal decomposition of ammonium paratungstate,» Applied Catalysis B: Environmental, vol. 110, pp.1-5,2011Eng
dc.relation.referencesBoudjemaa, A.; Trari, M., «Photo-catalytic hydrogen production over Fe2O3 based catalysts,» International Journal of Hydrogen Energy, vol. 35, pp. 7684-7689, 2010.Eng
dc.relation.referencesMeng, N.; Michael, M.; Leung, K.H.; Leung, D.Y.C.; Sumathy, K., «a review and recent develoopments in photocatalytic water-splitting using TiO2 for hydrogen production,» Renewable and Sustainable energy Reviews, vol. 11, pp. 401-425, 2007.Eng
dc.relation.referencesNavío, J.A.; Colón, G.; Macías, M.; Real, C.; Litte, M.I. Iron-doped titania semiconductor powders prepared by a sol-gel method. Part I: synthesis and characterization. Appl. Catal., A: Gen. 1999. 177 (1): 111-120.Eng
dc.relation.referencesManova, E.; Aranda, P.; Martín-Luengo, M.A.; Letaïef, S.; Ruiz-Hitzky, E. New titania-clay nanostructured porous materials. Microporous Mesoporous Mater. 2010.131 (1-3): 252-260.Eng
dc.relation.referencesLiese, E. Mineralogical notes an infrared absorption analysis of magnetite. The american mineralogist.vol.52, pp.1198-1205.1967.Eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subjectProducción fotocataliticaspa
dc.subjectHidrogeno
dc.subjectArena negra
dc.subject.lembTESISspa
dc.subject.lembTESIS-INGENIERÍAspa
dc.subject.lembFACULTAD DE INGENIERÍAspa
dc.subject.lembMAESTRÍA EN INGENIERÍA CON ÉNFASIS EN ENERGÍAS ALTERNATIVASspa
dc.subject.lembRAYOS Xspa
dc.subject.lembONDA ELECTROMAGNÉTICAspa
dc.subject.lembRADIACTIVIDADspa
dc.subject.proposalIntensidad magnéticaspa
dc.subject.proposalRayos xspa
dc.subject.proposalMicroscopía electrónicaspa
dc.subject.proposalInfrarrojospa
dc.titleProducción fotocatalitica de hidrógeno basada en el mineral arena negra como semiconductorspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Maestríaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PRODUCCIÓN FOTOCATALITICA DE HIDRÓGENO BASADA EN EL MINERAL ARENA NEGRA COMO SEMICONDUCTOR (1).pdf
Tamaño:
2.08 MB
Formato:
Adobe Portable Document Format
Descripción:
ReyesGómezGustavoAndrés2015

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: