Obtención de biocombustible a través de co-pirólisis rápida de biomasa de eucalipto y palma

dc.contributor.advisorNavarrete Rodríguez, Luisa Fernanda
dc.contributor.authorMelo Romero, Daniela Alejandra
dc.coverage.spatialBogotáspa
dc.creator.emaildanielaa-melor@unilibre.edu.cospa
dc.date.accessioned2021-10-15T03:18:44Z
dc.date.available2021-10-15T03:18:44Z
dc.date.created2021
dc.description.abstractEn la búsqueda de alternativas energéticas sustentables y menos contaminantes, el uso de la biomasa lignocelulósica ha cobrado gran importancia, ya que no sólo es renovable, sino que se encuentra en grandes cantidades; el uso de eucalipto – palma en la obtención de biocombustibles se lleva a cabo a través de co-pirólisis de en relación másica 50:50, contemplando temperatura y tiempo de contacto como variables de importancia en el proceso de transformación termoquímica. Los resultados obtenidos han permitido establecer el potencial energético que representa emplear dichas biomasas como materia prima renovable y más amigable con el medio ambiente.spa
dc.description.sponsorshipUniversidad Libre - Facultad de Ingeniería - Ingeniería Ambientalspa
dc.formatPDFspa
dc.identifier.instnameinstname:Universidad Librespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Librespa
dc.identifier.urihttps://hdl.handle.net/10901/19807
dc.language.isospa
dc.relation.references[1] DINCER, Ibrahim. Comprehensive Energy Systems. En: Fossil Fuels. vol.1, pp 521-567, 2018spa
dc.relation.references[2] JOSHI, Girdhar. PANDEY, Jitendra. RANA, Sravendra. et al. Challenges and opportunities for the application of biofuel. En: Renewable and Sustainable Energy Reviews N° 79, pp 850-866, Oct.2017spa
dc.relation.references[3] NINAWE, Gaurav. KIRAN, Seghal. SELVIN, Joseph. et al. Utilization of bioresources for sustainable biofuels: A Review. En: Renewable and Sustainable Energy Reviews N°73, pp 205-214, 2017spa
dc.relation.references[4] QUISPE, Isabel. NAVIA, Rodrigo. KAHHAT Ramzy. Energy potential from rice husk through direct combustion and fast pyrolysis: A review. En: Waste Management N°59, pp 200-210, Sept, 2017spa
dc.relation.references[5] DHYANI, Vaibhav. THALLADA, Bhaskar. A comprehensive review on the pyrolysis of lignocellulosic biomass En; Renewable Energy,vol. 129, pp 695-716. 2018spa
dc.relation.references[6] ABNISA, Faisal. DAUD WMAW.A review on co-pyrolysis of biomass: An optional technique to obtain En; Energy Conversion and Management, vol. 87, pp 71- 85, Oct, 2014.spa
dc.relation.references[7] BASU. Prabi, “Biomass gasification, pyrolysis and torrefaction” chapter 1. Introduction, En; Elsevier Inc, 3rd Edition, Jun,2018.spa
dc.relation.references[8] BRIDGWATER, A.V. Review of fast pyrolysis of biomass and product upgrading, En; Biomass and Bioenergy., vol.38, pp 68-94, Marzo,2012.spa
dc.relation.references[9] KUMAR. Deepak, VINU. Ravikrishnan, Copyrolysis of Lignocellulosic Biomass with Waste Plastics for Resource Recovery, En Waste Biorefinery, pp 349-391, Ene, 2018spa
dc.relation.references[10] CAI. Junmeng. HE. Yifeng, YU. Xi., et al. “Review of physicochemical properties and analytical characterization of lignocellulosic biomass. En: Renewable and Sustainable Energy Reviews., vol.76, pp, 309-322, Sept 2017spa
dc.relation.references[11] FOLGUERAS, M.B. FERNÁNDEZ F.J.et al. Fast pyrolysis of Guadua angustifoliaKunt. En; Energy Procedia N°136, pp 60 – 65, Jul, 2017spa
dc.relation.references[12] MESSINA. LIGurevich, BONELLI, P.R. Copyrolysis of peanut shells and cassava starch mixtures: Effect of the components proportion, En; Journal of Analytical and Applied Pyrolysis, vol. 113, pp 508-517, Marzo, 2015.spa
dc.relation.references[13] ONENC. Sermin, BREBU, Mihai, VASILE. Corneria, YANIK. Jale, Copyrolysis of scrap tires with oily wastes, En; Journal of Analytical and Applied Pyrolysis, vol. 27 94, pp, 184-189, 2012.spa
dc.relation.references[14] MARTINEZ. Juan, VECES. Alberto, MASTRAL. Ana, et al. Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel, En: Fuel processing Technology, vol.119, pp 263- 271, Feb, 2014.spa
dc.relation.references[15] REYES. Omar, REYES. Diego, Evaluación del proceso de pirolisis y co-pirolisis de cuesco de palma y neumáticos usados en una atmosfera de CO2, Bogotá, 2019, Trabajo de grado, Universidad Libre, Facultad de Ingeniería, 2019.spa
dc.relation.references[16] Ocampo-Durán. A, “La palma aceitera africana, un recurso de alto potencial para la producción animal en el trópico”, en línea, Disponible en: http://www.fao.org/3/v4440t/v4440t0g.htmspa
dc.relation.references[17] VEIRAS. Xosé, SOTO. Miguel Ángel, “La conflictividad de las plantaciones de eucalipto en España y Portugal” Greenpeace, en línea, disponible en: https://archivoes.greenpeace.org/espana/Global/espana/report/bosques/InformeEuca lipto2011.pdfspa
dc.relation.references[18] WOOD, Nathan. ROELICH, Katy. Tensions, capabilities, and justice in climate change mitigation of fossil fuels. Energy Research & Social Science, vol. 52, pag.114– 122, 2019.spa
dc.relation.references[19] X.Zhou, L.J. Broadbelt, R.Vinu, Chapter Two - Mechanistic Understanding of Thermochemical Conversion of Polymers and Lignocellulosic Biomass, Advances in Chemical Engineering, Vol. 49, Pág, 95-198, 2016.spa
dc.relation.references[20] AHMAD, Farah. ZHANG, Zhanying. DOHERTY, William. The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery. Renewable and Sustainable Energy Reviews, vol. 109, pag.386–411, 2019.spa
dc.relation.references[21] J. M. Rincón. E. E. Silva. Bioenergía: Fuentes, conversión y sustentabilidad. La Red Iberoamericana de Aprovechamiento de Residuos Orgánicos en Producción de Energía. Bogotá – Colombia, 2014spa
dc.relation.references[22] DAI, Leilei. WANG, Yunpu, LIU, Yuhuan. Et al. Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renewable and Sustainable Energy Reviews, vol. 107, pág. 20-36, 2019spa
dc.relation.references[23] ABIOLA, Fakayode. ABOAGARIB, Elmuez, ZHOU, Cunshan, MA, Haile, Copyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar - A review, Bioresource Technology, 2019spa
dc.relation.references[24] KAN, Tao. STREZOV, Vladimir. EVANS Tim. Lignocellulosic biomass pyrolylis: A review of product properties and effects of pyrolysis parameters. Renewable and 28 Sustainable Energy Reviews, vol. 57, pág. 1126-1140, 2016.spa
dc.relation.references[25] KUMAR, R. STREZOV, V. WELDEKIDAN, H. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of dropin fuels. Renewable and Sustainable Energy Reviews. Vol.123, 2020spa
dc.relation.references[26] CHEN, Wei. CHEN, Yingquan. YANG, Haiping. Et al, Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect. Bioresource Technology, 2017.spa
dc.relation.references[27] UZOEJINWA, Benjamin. HE, Xiuhua. WANGA, Shuang. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. Energy Conversion and Management, vol.163 pág. 468–492, 2018.spa
dc.relation.references[28] AHMED MJ, HAMEED BH, Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review, Journal of Cleaner Production, 2020spa
dc.relation.references[29] PECHA, Brennan, GARCIA Manuel. Chapter 26 - Pyrolysis of Lignocellulosic, Biomass: Oil, Char, and Gas. Bioenergy, Biomass to biofuels, pág 413-442, 2015.spa
dc.relation.references[30] P. Basu, Biomass gasification, pyrolysis and torrefaction, chapter 3. Biomass characteristics, Elsevier Inc, 3rd Edition, 2018.spa
dc.relation.references[31] GARCÍA – NUÑEZ. Jesús, et al. Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resources, Conservation and Recycling vol. 110, pp 99–114, 2016.spa
dc.relation.references[32] OREA-IGARZA. U, CORDERO MACHADO. E, et al. Estudio comparativo de la composición química de la corteza de tres especies de eucaliptos a tres alturas del fuste comercial, En: Revista redalyc, Dic. 2006spa
dc.relation.references[33] SHURONG. Wang, et al. Lignocellulosic biomass pyrolysis mechanism: A stateof-the-art review. Progress in Energy and Combustion Science vol. 62, 2017spa
dc.relation.references[34] BECERRA. Erika, Caracterización del desecho agroindustrial de la palma de aceite “cuesco” para el mejoramiento de las capas granulares de la estructura de pavimento, Bogotá, 2017, Especialista en ingeniería de pavimentos, Universidad Militar Nueva Granada. Facultad de Ingeniería – Dirección de Posgradosspa
dc.relation.references[35] MENDOZA. David, Residuos de palma africana purifican agua y aire, En; UN periódico, Nº. 177, (May. 2014) Universidad Nacionalspa
dc.relation.references[36] FANIJO, Ebenezer. BABAFEMI, John. AROWOJOLU, Olaniyi. Performance of laterized concrete made with palm kernel shell as replacement for coarse aggregate, Construction and Building Materials, vol 250, 2020.spa
dc.relation.references[37] RINCÓN. Nelson, MORENO. Juan. Carlos, GIRALDO Liliana, Uso de semillas de eucalipto para descontaminar aguas residuales, núm.18, 2015, Universidad de los Andes, Facultad de Cienciasspa
dc.relation.references[38] CASAS, Yannay. DAZA, Karen. CEA, Juan. Et al, Life cycle assessment of innovative insulation panels based on eucalyptus bark fibers, Journal of cleaner production, vol 249, 2020.spa
dc.relation.references[39] ADAK, Totan. BARIK, Nishant, PATIL, Naveenkumar. Nanoemulsion of eucalyptus oil: An alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst)) of rice, Industrial Crops & Products, vol 143. 2020.spa
dc.relation.references[40] “La palma de aceite en Colombia” Fedepalma, en línea, Disponible en: http://web.fedepalma.org/la-palma-de-aceite-en-colombia-departamentosspa
dc.relation.references[41] Min de comercio Industria y Turismo, “Invierta en Colombia trabajo, compromiso, ingenio”,sep.2009, en línea, disponible en: https://www.inviertaencolombia.com.co/Adjuntos/089_Sector%20Forestal.pdfspa
dc.relation.references[42] Normatividad General de los Biocombustibles en Colombia, fedebiocombustibles, en línea, disponible en: http://www.fedebiocombustibles.com/v3/main-pagina-id29.htmspa
dc.relation.references[43] MÜLLER. Niels, TESSINI. Catherine, SEGURA. Cristina, et al, Pirólisis rápida de biomasa, En; Bioenergia & Biorrefinaria, (2013). pp.459-482spa
dc.relation.references[44] MONTOYA. Jorge, CASTILLO. Edgar, ACERO. Julia, et al Pirólisis Rápida de Biomasa, Ecopetrol, Medellín, 2014, Universidad Nacional de Colombiaspa
dc.relation.references[45] American Society for Testing and Materials, ASTM International, Estados Unidos: https://www.astm.org/spa
dc.relation.references[46] VÁSQUEZ SIERRA. Erika, HERRERA Builes. Jhon Fredy, Metodología para la caracterización de combustibles sólidos maderables del área metropolitana del valle de Aburrá “amva”, Medellin Colombia, Vol. 59, núm. 2, 2015 Revista Facultad Nacional de Agronomía.spa
dc.relation.references[47] RINCÓN. Nelson, MORENO. Juan. Carlos, GIRALDO Liliana, Uso de semillas de eucalipto para descontaminar aguas residuales, núm.18, 2015, Universidad de los Andes, Facultad de Cienciasspa
dc.relation.references[48] CASAS, Yannay. DAZA, Karen. CEA, Juan. Et al, Life cycle assessment of innovative insulation panels based on eucalyptus bark fibers, Journal of cleaner production, vol 249, 2020.spa
dc.relation.references[49] ADAK, Totan. BARIK, Nishant, PATIL, Naveenkumar. Nanoemulsion of 30 eucalyptus oil: An alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst)) of rice, Industrial Crops & Products, vol 143. 2020.spa
dc.relation.references[50] “La palma de aceite en Colombia” Fedepalma, en línea, Disponible en: http://web.fedepalma.org/la-palma-de-aceite-en-colombia-departamentosspa
dc.relation.references[51] Min de comercio Industria y Turismo, “Invierta en Colombia trabajo, compromiso, ingenio”,sep.2009, en línea, disponible en: https://www.inviertaencolombia.com.co/Adjuntos/089_Sector%20Forestal.pdfspa
dc.relation.references[52] Normatividad General de los Biocombustibles en Colombia, fedebiocombustibles, en línea, disponible en: http://www.fedebiocombustibles.com/v3/main-pagina-id29.htmspa
dc.relation.references[53] MÜLLER. Niels, TESSINI. Catherine, SEGURA. Cristina, et al, Pirólisis rápida de biomasa, En; Bioenergia & Biorrefinaria, (2013). pp.459-482spa
dc.relation.references[54] MONTOYA. Jorge, CASTILLO. Edgar, ACERO. Julia, et al Pirólisis Rápida de Biomasa, Ecopetrol, Medellín, 2014, Universidad Nacional de Colombiaspa
dc.relation.references[55] American Society for Testing and Materials, ASTM International, Estados Unidos: https://www.astm.org/spa
dc.relation.references[56] VÁSQUEZ SIERRA. Erika, HERRERA Builes. Jhon Fredy, Metodología para la caracterización de combustibles sólidos maderables del área metropolitana del valle de Aburrá “amva”, Medellin Colombia, Vol. 59, núm. 2, 2015 Revista Facultad Nacional de Agronomía.spa
dc.relation.references[57] ÁLVAREZ. Ana, PIZARRO. Consuelo, Belén. María, Caracterización química de biomasa y su relación con el poder calorífico, 2012, Universidad de Oviedo Dpto. de Energía.spa
dc.relation.references[58] AL-KASSIR. Raúl, Caracterización y preparación de residuos de biomasa con ensayos experimentales de secado térmico y combustión no contaminante,2013, Instituto Politécnico de Portoalegre.spa
dc.relation.references[59] Operating Instruction Manual, 1341 Oxygen Bomb Calorimeter, No. 204Mspa
dc.relation.references[60] OCANHA, Enzo. ZINANI, Flávia. MODOLO, Regina. SANTOS, Fernando. Assesment of the effects of chemical and physical parameters in the fluidization of biomass and sand binary mixtures through statistical analysis, Energy. (2019)spa
dc.relation.references[61] MYTHILI, R. VENKATACHALAM, P. SUBRAMANIAN, D. Characterization of 31 bioresidues for biooil production through pyrolysis, Vol.138, Pag. 71-78, 2013.spa
dc.relation.references[62] SOH. Loh, Biocombustibles de segunda generación de la biomasa de palma de aceite, Palmas, vol.37 (Especial Tomo II), pp. 137-148, 2016spa
dc.relation.references[63] NÚÑEZ, D. Uso de residuos agrícolas para la producción de biocombustibles en el Departamento del Meta. 2012spa
dc.relation.references[64] FANTINI, M. Chapter 2 Biomass Availability, Potential and Characteristics, Biorefineries, pág. 21-54, 2017spa
dc.relation.references[65] YUFU, X. XIANGUO, Hu. WENDONG, Li. YINYAN, Shi. Preparation and Characterization of Bio-Oil from Biomass, Progress in Biomass and Bioenergy Production, 2011.spa
dc.relation.references[66] VINICIUS, Silva. RODRIGUES, Thiago. ABREU-JUNIOR, Cassio. Et al. Influences of edaphoclimatic conditions on deep rooting and soil water availability in Brazilian Eucalyptus plantations, Forest Ecology and Management, vol. 455, (2020)spa
dc.relation.references[67] OJHA, D. Fast pyrolysis kinetics of lignocellulosic biomass of varying compositions, Energy Conversion and Management: X, 2021spa
dc.relation.references[68] BERTERO, M. Fuels from bio-oils: Bio-oil production from different residual sources, characterization and thermal conditioning, Fuel, vol 95, pp 263- 271, 2012spa
dc.relation.references[69] KUMAR, R. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels, Renewable and Sustainable Energy Reviews, Vol. 123, 2020spa
dc.relation.references[70] UZOEJINWA, B. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide, Energy Conversion and Management, vol. 163, pp 468-492, 2018spa
dc.relation.references[71] FERREIRA, M. Generation of biofuels by slow pyrolysis of palm empty fruit bunches: Optimization of process variables and characterization of physical-chemical products, Biomass and Bioenergy, Vol.140, 2020spa
dc.relation.references[72] Li, C. Interaction of the volatiles from co-pyrolysis of pig manure with cellulose/ glucose and their effects on char properties, Journal of Environmental Chemical Engineering, Vol. 8, 2020spa
dc.relation.references[73] ZHANG, L. Comparative study on the two-step pyrolysis of different lignocellulosic biomass, Effects of components, Journal of Analytical and Applied Pyrolysis, 2020spa
dc.relation.references[74] NGUYEN, Q. Improvement of bio-crude oil properties via co-pyrolysis of pine sawdust and waste polystyrene foam, Journal of Environmental Management, Vol, 237, pp 24-29, 2019 32spa
dc.relation.references[75] SAKULKIT, P. Characteristics of pyrolysis products from pyrolysis and copyrolysis of rubber wood and oil palm trunk biomass for biofuel and value-added applications, Journal of Environmental Chemical Engineering, Vol. 8, 2020spa
dc.relation.references[67] AL-MAARI, M. Co-pyrolysis of oil palm empty fruit bunch and oil palm frond with low-density polyethylene and polypropylene for bio-oil production, Arabian Journal of Chemistry, vol. 14, 2021spa
dc.relation.references[66] ABDULLAH, N. Characterisation of Oil Palm Empty Fruit Bunches for Fuel Application, Journal of Physical Therapy Science, vol. 22, 2011spa
dc.relation.references[68] LEAL, L. E., Juárez, V., Terán, M., Composición química de la madera de Eucalyptus grandis Hill ex Maiden, Revista de Ciencias Forestales [en linea] 2011, procedente de Finca Las Maravillas, Departamento de Orán, Salta. Quebrachospa
dc.relation.references[69] CHEN. Rongjie, LUN. Liyong, CONG. Kunlin, et al. Insights into pyrolysis and copyrolysis of tobacco stalk and scrap tire: Thermochemical behaviors, kinetics, and evolved gas analysis, Energy, vol. 183, pp. 25-34, 2019.spa
dc.relation.references[70] DA SILVA. Luis, ALMEIDA. Pedro, RIBEIRO. Carlos, An experimental assessment of Eucalyptus urosemente energy potential for bimass production in Brazil.Renewable and Sustainable Energy Reviews, vol.103, pp. 361-369, 2019spa
dc.relation.references[71] POLLARD, A. Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties, Journal of Analytical and Applied Pyrolysis, Vol, 93, pp 129-138, 2012spa
dc.relation.references[72]. DEWAYANTO, N. Use of palm oil decanter cake as a new substrate for the production of bio-oil by vacuum pyrolysis. Energy Conversion and Management, Vol. 86, pp 226-232, 2014spa
dc.relation.references[73] BRIDGWATER, A.V. BRAMMER. J.G, The influence of feedstock drying on the performance and economics of a biomass gasifier-engine CHP system, Biomass & Bioenergy, vol.22, pp. 271-281, 200spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subjectBiocombustiblespa
dc.subjectPirólisisspa
dc.subjectBiomasaspa
dc.subject.lembEnergía biomásicaspa
dc.subject.lembCombustibles vegetalesspa
dc.subject.lembGestión ambientalspa
dc.subject.lembEvaluación del impacto ambientalspa
dc.subject.lembDesarrollo sostenible -- Aspectos ambientales -- Colombiaspa
dc.subject.lembConversión de energíaspa
dc.subject.subjectenglishBiofuelspa
dc.subject.subjectenglishPyrolysisspa
dc.subject.subjectenglishBiomassspa
dc.titleObtención de biocombustible a través de co-pirólisis rápida de biomasa de eucalipto y palmaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Pregradospa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
TRABAJO DE GRADO DANIELA MELO.pdf
Tamaño:
1011.78 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Pregrado
Cargando...
Miniatura
Nombre:
AUTORIZACIÓN TGIA.pdf
Tamaño:
92.92 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización para la publicación digital

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: