Revisión documental enfocada a la caracterización de zonas vulnerables por contaminación de suelos en Colombia.

dc.contributor.advisorGarces, Siby
dc.contributor.authorDaza, Diego
dc.coverage.spatialBogotáspa
dc.creator.emaildiegoa-dazag@unilibre.edu.cospa
dc.date.accessioned2023-07-07T13:41:02Z
dc.date.available2023-07-07T13:41:02Z
dc.date.created2023-07-05
dc.description.abstractLa contaminación del suelo es una problemática ambiental cada vez más aguda en el mundo entero. Los suelos son esenciales para la producción de alimentos, la biodiversidad y el almacenamiento de carbono, pero están siendo afectados por diversas fuentes como la industria, la agricultura, la minería y la eliminación inadecuada de residuos. La contaminación del suelo puede causar impactos negativos en la salud humana y la calidad de vida, así como en la economía y el medio ambiente. Además, la recuperación de suelos contaminados puede ser costosa y a menudo es difícil de lograr con eficacia. Es esencial afrontar esta problemática con medidas sostenibles enfocadas a la prevención de la contaminación del suelo y la restauración de los suelos contaminados para proteger la salud humana y el medio ambiente, garantizar la sostenibilidad a largo plazo de la producción de alimentos y la biodiversidad. Por tal motivo, este documento busca desarrollar una revisión de literatura exhaustiva, crítica y enfocada a la caracterización a los factores de mayor impacto en la contaminación de los suelos en Colombia durante la última década y las zonas principalmente afectadas. Este documento ofrecerá al lector un panorama general de la problemática de la contaminación de suelos en Colombia, una caracterización de las zonas vulnerables y las actividades antrópicas asociadas al deterioro sistemático de este recurso no renovable. Finalmente, este articulo resulta ser un insumo valioso para la comunidad académica interesada en conocer al detalle la criticidad de la contaminación de suelos en Colombia, establecer un precedente teórico frente a esta problemática y ofrecer herramientas que permitan adoptar un modelo de desarrollo sostenible en Colombia.spa
dc.description.abstractenglishSoil pollution is an increasingly acute environmental problem worldwide. Soil is essential for food production, biodiversity, and carbon storage, but are being affected by various sources of pollution such as industry, agriculture, mining, and inadequate disposal of waste. Soil pollution can have negative impacts on human health and quality of life, as well as on the economy and the environment. In addition, recovery of contaminated soils can be costly and often difficult to effectively. It is essential to address this problem with sustainable measures focused on preventing soil pollution and restoring contaminated soils to protect human health and the environment, to ensure the long-term sustainability of food production and biodiversity. Therefore, this document seeks to develop a comprehensive, critical, and focused literature review on characterizing the factors of greatest impact on soil pollution in Colombia during the last decade and the principal regions affected. This document will offer the reader a general overview of the problem of soil pollution in Colombia, a characterization of vulnerable areas and the anthropic activities associated with the systematic deterioration of this non-renewable resource. Finally, this article is a valuable input for the academic community interested in knowing in detail the criticism of soil pollution in Colombia, establishing a theoretical precedent against this problem and offering tools that allow adopting a model of sustainable development in Colombia.spa
dc.description.sponsorshipUniversidad Libre - Facultad de Ingeniería - Especialización en gerencia ambiental.spa
dc.formatPDFspa
dc.identifier.urihttps://hdl.handle.net/10901/25638
dc.relation.referencesAgudelo Calderón, C. A., García-Ubaqie, J. C., Robledo Martínez, R., García-Ubaque, C. A., & Quiroz-Arcentales, L. (2016). Evaluación de condiciones ambientales: aire, agua y suelos en áreas de actividad minera en Boyacá, Colombia. Revista de Salud Pública, 18(1), 50–60. https://doi.org/10.15446/rsap.v18n1.55384spa
dc.relation.referencesAlonso, D. L., Latorre, S., Castillo, E., & Brandão, P. F. B. (2014). Environmental occurrence of arsenic in Colombia: A review. Environmental Pollution, 186, 272–281. https://doi.org/10.1016/j.envpol.2013.12.009spa
dc.relation.referencesArias Espana, V. A., Rodriguez Pinilla, A. R., Bardos, P., & Naidu, R. (2018). Contaminated land in Colombia: A critical review of current status and future approach for the management of contaminated sites. Science of The Total Environment, 618, 199–209. https://doi.org/10.1016/j.scitotenv.2017.10.245spa
dc.relation.referencesBuckley, J., Willingham, E., Agras, K., & Baskin, L. S. (2006). Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice. Environmental Health, 5(1), 4. https://doi.org/10.1186/1476-069X-5-4spa
dc.relation.referencesCaballero-Gallardo, K., Palomares-Bolaños, J., & Olivero-Verbel, J. (2022). Mercury Concentrations in Water, Sediments, Soil, and Fish Around Ancestral Afro-Descendant Territories Impacted by Gold Mining in the Cauca Department, Colombia. Water, Air, & Soil Pollution, 233(9), 393. https://doi.org/10.1007/s11270-022-05779-3spa
dc.relation.referencesDonado, E. P., Oliveira, M. L. S., Gonçalves, J. O., Dotto, G. L., & Silva, L. F. O. (2021). Soil contamination in Colombian playgrounds: effects of vehicles, construction, and traffic. Environmental Science and Pollution Research, 28(1), 166–176. https://doi.org/10.1007/s11356-020-09965-wspa
dc.relation.referencesEliana Andrea, M.-M., Ana Carolina, T.-E., Tito José, C.-B., José Luis, M.-N., & Luis Carlos, G.-M. (2019). Evaluation of contaminants in agricultural soils in an Irrigation District in Colombia. Heliyon, 5(8), e02217. https://doi.org/10.1016/j.heliyon.2019.e02217spa
dc.relation.referencesGao, Y., Lu, C., Shen, D., Liu, J., Ma, Z., Yang, B., Ling, W., & Waigi, M. G. (2019). Elimination of the risks of colistin resistance gene (mcr-1) in livestock manure during composting. Environment International, 126, 61–68. https://doi.org/10.1016/j.envint.2019.02.015spa
dc.relation.referencesGarcia Janeth. (2017). DETERMINAR LAS CAUSAS QUE ORIGINAN LA DEGRADACIÓN DEL SUELO EN LA VEREDA SAN ANTONIO, MUNICIPIO DE PAMPLONITA, DEPARTAMENTO NORTE DE SANTANDER. UNIVERSIDAD NACIONAL ABIERTA Y ADISTANCIA –UNAD.spa
dc.relation.referencesGil, J. P., López-Zuleta, S., Quiroga-Mateus, R. Y., Benavides-Erazo, J., Chaali, N., & Bravo, D. (2022). Cadmium distribution in soils, soil litter and cacao beans: a case study from Colombia. International Journal of Environmental Science and Technology, 19(4), 2455–2476. https://doi.org/10.1007/s13762-021-03299-xspa
dc.relation.referencesGonzález-Martínez, M. D., Huguet, C., Pearse, J., McIntyre, N., & Camacho, L. A. (2019). Assessment of potential contamination of Paramo soil and downstream water supplies in a coal-mining region of Colombia. Applied Geochemistry, 108, 104382. https://doi.org/10.1016/j.apgeochem.2019.104382spa
dc.relation.referencesGuerlet, E., Vasseur, P., & Giambérini, L. (2010). Spatial and temporal variations of biological responses to environmental pollution in the freshwater zebra mussel. Ecotoxicology and Environmental Safety, 73(6), 1170–1181. https://doi.org/10.1016/j.ecoenv.2010.05.009spa
dc.relation.referencesHyun, Y.-K., Kim, K.-E., & Ha, K.-J. (2005). A comparison of methods to estimate the height of stable boundary layer over a temperate grassland. Agricultural and Forest Meteorology, 132(1–2), 132–142. https://doi.org/10.1016/j.agrformet.2005.03.010spa
dc.relation.referencesInjang, U., Noyrod, P., Siangproh, W., Dungchai, W., Motomizu, S., & Chailapakul, O. (2010). Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes. Analytica Chimica Acta, 668(1), 54–60. https://doi.org/10.1016/j.aca.2010.01.018spa
dc.relation.referencesKatam, K., Shimizu, T., Soda, S., & Bhattacharyya, D. (2020). Performance evaluation of two trickling filters removing LAS and caffeine from wastewater: Light reactor (algal-bacterial consortium) vs dark reactor (bacterial consortium). Science of The Total Environment, 707, 135987. https://doi.org/10.1016/j.scitotenv.2019.135987spa
dc.relation.referencesKhan, S., Naushad, Mu., Lima, E. C., Zhang, S., Shaheen, S. M., & Rinklebe, J. (2021). Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies – A review. Journal of Hazardous Materials, 417, 126039. https://doi.org/10.1016/j.jhazmat.2021.126039spa
dc.relation.referencesKopittke, P. M., Asher, C. J., & Menzies, N. W. (2008). Prediction of Pb speciation in concentrated and dilute nutrient solutions. Environmental Pollution, 153(3), 548–554. https://doi.org/10.1016/j.envpol.2007.09.012spa
dc.relation.referencesLee, D.-H., Jacobs, D. R., Park, H. Y., & Carpenter, D. O. (2017). A role of low dose chemical mixtures in adipose tissue in carcinogenesis. Environment International, 108, 170–175. https://doi.org/10.1016/j.envint.2017.08.015spa
dc.relation.referencesLi, F., Jin, J., Shen, Z., Ji, H., Yang, M., & Yin, Y. (2020). Removal and recovery of phosphate and fluoride from water with reusable mesoporous Fe3O4@mSiO2@mLDH composites as sorbents. Journal of Hazardous Materials, 388, 121734. https://doi.org/10.1016/j.jhazmat.2019.121734spa
dc.relation.referencesLinderholm, H. W. (2006). Growing season changes in the last century. Agricultural and Forest Meteorology, 137(1–2), 1–14. https://doi.org/10.1016/j.agrformet.2006.03.006spa
dc.relation.referencesMarion, J. L., & Cole, D. N. (1996). Spatial and Temporal Variation in Soil and Vegetation Impacts on Campsites. Ecological Applications, 6(2), 520–530. https://doi.org/10.2307/2269388spa
dc.relation.referencesMarrugo-Negrete, J. L., Navarro-Frómeta, A. E., & Urango-Cardenas, I. D. (2014). Organochlorine Pesticides in Soils from the Middle and Lower Sinú River Basin (Córdoba, Colombia). Water, Air, & Soil Pollution, 225(8), 2053. https://doi.org/10.1007/s11270-014-2053-3spa
dc.relation.referencesMarrugo‐Negrete, J., Pinedo‐Hernández, J., Combatt, E. M., Bravo, A. G., & Díez, S. (2019). Flood‐induced metal contamination in the topsoil of floodplain agricultural soils: A case‐study in Colombia. Land Degradation & Development, 30(17), 2139–2149. https://doi.org/10.1002/ldr.3398spa
dc.relation.referencesMarrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380–388. https://doi.org/10.1016/j.envres.2017.01.021spa
dc.relation.referencesMartinez Zoraya, Gonzalez Maria, Paternina Jessica, & Cantero Mónica. (2017). Contaminación de suelos agrícolas por metales pesados, zona minera El Alacrán, Córdoba-Colombia.spa
dc.relation.referencesMcInerney, C., & Johannsdottir, L. (2016). Lima Paris Action Agenda: Focus on Private Finance – note from COP21. Journal of Cleaner Production, 126, 707–710. https://doi.org/10.1016/j.jclepro.2016.02.116spa
dc.relation.referencesMinisterio Ambiente. (2012). Diagnóstico nacional de salud ambiental.spa
dc.relation.referencesMinkina Tatiana, Motusova Galina, Nazarenko Olga, & Mandzhieva Saglara. (2010). HEAVY METAL COMPOUNDS IN SOIL: TRANSFORMATION UPON SOIL POLLUTION AND ECOLOGICAL SIGNIFICANCE.spa
dc.relation.referencesMirsal Ibrahim. (2004). Soil Pollution - Origin, Monitoring & Remediation. Springer.spa
dc.relation.referencesMoher, D. (2015). Optimal strategies to consider when peer reviewing a systematic review and meta-analysis. BMC Medicine, 13(1), 274. https://doi.org/10.1186/s12916-015-0509-yspa
dc.relation.referencesMukherjee, A. B., & Zevenhoven, R. (2006). Mercury in coal ash and its fate in the Indian subcontinent: A synoptic review. Science of The Total Environment, 368(1), 384–392. https://doi.org/10.1016/j.scitotenv.2005.08.022spa
dc.relation.referencesMuskus, A. M., Krauss, M., Miltner, A., Hamer, U., & Nowak, K. M. (2020). Degradation of glyphosate in a Colombian soil is influenced by temperature, total organic carbon content and pH. Environmental Pollution, 259, 113767. https://doi.org/10.1016/j.envpol.2019.113767spa
dc.relation.referencesNa, C., Zhang, Y., Quan, X., Chen, S., Liu, W., & Zhang, Y. (2017). Evaluation of the detoxification efficiencies of coking wastewater treated by combined anaerobic-anoxic-oxic (A 2 O) and advanced oxidation process. Journal of Hazardous Materials, 338, 186–193. https://doi.org/10.1016/j.jhazmat.2017.05.037spa
dc.relation.referencesNavarro, L., Camacho, R., López, J. E., & Saldarriaga, J. F. (2021). Assessment of the potential risk of leaching pesticides in agricultural soils: study case Tibasosa, Boyacá, Colombia. Heliyon, 7(11), e08301. https://doi.org/10.1016/j.heliyon.2021.e08301spa
dc.relation.referencesOlivero Jesus, Johnson Boris, Mendoza Claudia, Paz Ramon, & Olivero Rafael. (2004). MERCURY IN THE AQUATIC ENVIRONMENT OF THE VILLAGE OF CAIMITO AT THE MOJANA REGION, NORTH OF COLOMBIA.spa
dc.relation.referencesPieczyńska, Ochoa-Chavez, Wilczewska, Bielicka-Giełdoń, & Siedlecka. (2019). Insights into Mechanisms of Electrochemical Drug Degradation in Their Mixtures in the Split-Flow Reactor. Molecules, 24(23), 4356. https://doi.org/10.3390/molecules24234356spa
dc.relation.referencesPussegoda, K., Turner, L., Garritty, C., Mayhew, A., Skidmore, B., Stevens, A., Boutron, I., Sarkis-Onofre, R., Bjerre, L. M., Hróbjartsson, A., Altman, D. G., & Moher, D. (2017). Systematic review adherence to methodological or reporting quality. Systematic Reviews, 6(1), 131. https://doi.org/10.1186/s13643-017-0527-2spa
dc.relation.referencesRengers, F., & Wohl, E. (2007). Trends of grain sizes on gravel bars in the Rio Chagres, Panama. Geomorphology, 83(3–4), 282–293. https://doi.org/10.1016/j.geomorph.2006.02.019spa
dc.relation.referencesRethlefsen, M. L., Kirtley, S., Waffenschmidt, S., Ayala, A. P., Moher, D., Page, M. J., Koffel, J. B., Blunt, H., Brigham, T., Chang, S., Clark, J., Conway, A., Couban, R., de Kock, S., Farrah, K., Fehrmann, P., Foster, M., Fowler, S. A., Glanville, J., … Young, S. (2021). PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Systematic Reviews, 10(1), 39. https://doi.org/10.1186/s13643-020-01542-zspa
dc.relation.referencesSage, M., Fourel, I., Cœurdassier, M., Barrat, J., Berny, P., & Giraudoux, P. (2010). Determination of bromadiolone residues in fox faeces by LC/ESI-MS in relationship with toxicological data and clinical signs after repeated exposure. Environmental Research, 110(7), 664–674. https://doi.org/10.1016/j.envres.2010.07.009spa
dc.relation.referencesSchuytema, G. S., & Nebeker, A. V. (1999). Comparative Effects of Ammonium and Nitrate Compounds on Pacific Treefrog and African Clawed Frog Embryos. Archives of Environmental Contamination and Toxicology, 36(2), 200–206. https://doi.org/10.1007/s002449900461spa
dc.relation.referencesShahzad, A., Rasool, K., Miran, W., Nawaz, M., Jang, J., Mahmoud, K. A., & Lee, D. S. (2018). Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite. Journal of Hazardous Materials, 344, 811–818. https://doi.org/10.1016/j.jhazmat.2017.11.026spa
dc.relation.referencesSilva Sandra, & Correa Francisco. (2009). ANÁLISIS DE LA CONTAMINACIÓN DEL SUELO: REVISIÓN DE LA NORMATIVA Y POSIBILIDADES DE REGULACIÓN ECONÓMICA. Semestre Económico, 12(23).spa
dc.relation.referencesTanaka, N. (2003). The Future of HPLC. Journal of Separation Science, 26(3–4), 153–153. https://doi.org/10.1002/jssc.200390023spa
dc.relation.referencesTricco, A. C., Antony, J., Zarin, W., Strifler, L., Ghassemi, M., Ivory, J., Perrier, L., Hutton, B., Moher, D., & Straus, S. E. (2015). A scoping review of rapid review methods. BMC Medicine, 13(1), 224. https://doi.org/10.1186/s12916-015-0465-6spa
dc.relation.referencesVelazquez Johana. (2017). Contamination of soil and water by hydrocarbons in Colombia. Analysis of phytoremediation as a biotechnology strategy for recovery. Revista de Investigación Agraria y Ambiental , 8(1).spa
dc.relation.referencesVidal, T., Santos, J. I., Queirós, L., Ré, A., Abrantes, N., Gonçalves, F. J. M., & Pereira, J. L. (2019). Environmental benchmarks based on ecotoxicological assessment with planktonic species might not adequately protect benthic assemblages in lotic systems. Science of The Total Environment, 668, 1289–1297. https://doi.org/10.1016/j.scitotenv.2019.03.067spa
dc.relation.referencesWan, M. T., Szeto, S. Y., & Price, P. (1995). Distribution and Persistence of Azinphos‐Methyl and Parathion in Chemigated Cranberry Bogs. Journal of Environmental Quality, 24(4), 589–596. https://doi.org/10.2134/jeq1995.00472425002400040006xspa
dc.relation.referencesWang, J., Shi, L., Zhai, L., Zhang, H., Wang, S., Zou, J., Shen, Z., Lian, C., & Chen, Y. (2021). Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. Ecotoxicology and Environmental Safety, 207, 111261. https://doi.org/10.1016/j.ecoenv.2020.111261spa
dc.relation.referencesWoods, R. (2005). Hydrologic Concepts of Variability and Scale. In Encyclopedia of Hydrological Sciences. John Wiley & Sons, Ltd. https://doi.org/10.1002/0470848944.hsa002spa
dc.relation.referencesWu, S., Zou, S., Liang, G., Qian, G., & He, Z. (2018). Enhancing recovery of magnesium as struvite from landfill leachate by pretreatment of calcium with simultaneous reduction of liquid volume via forward osmosis. Science of The Total Environment, 610–611, 137–146. https://doi.org/10.1016/j.scitotenv.2017.08.038spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subjectContaminación de suelosspa
dc.subjectDesarrollo sosteniblespa
dc.subjectIndustrializaciónspa
dc.subjectExplotación de suelosspa
dc.subjectAgentes antrópicosspa
dc.subjectHuella ambientalspa
dc.subjectBiodiversidadspa
dc.subject.lembGerencia ambientalspa
dc.subject.lembMedio ambiente -- Legislaciónspa
dc.subject.subjectenglishSoil pollutionspa
dc.subject.subjectenglishSustainable developmentspa
dc.subject.subjectenglishAntropogenic agentsspa
dc.subject.subjectenglishIndustrializationspa
dc.subject.subjectenglishSoil exploitationspa
dc.subject.subjectenglishEnvironmental footprintspa
dc.titleRevisión documental enfocada a la caracterización de zonas vulnerables por contaminación de suelos en Colombia.spa
dc.title.alternativeRevisión documental enfocada a la caracterización de zonas vulnerables por contaminación de suelos en Colombia.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Especializaciónspa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Revision Documental.pdf
Tamaño:
491.92 KB
Formato:
Adobe Portable Document Format
Descripción:
Revisión documental enfocada a la caracterización de zonas vulnerables por la contaminación de suelos.
Cargando...
Miniatura
Nombre:
Autorizacion Libre..pdf
Tamaño:
345.26 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: