Evaluación de la actividad antimicrobiana de nanopartículas de Hierro (FeNPs) sintetizadas con el extracto de Annona Muricata L. controladas mediante micela inversa

dc.contributor.advisorRodríguez Macias, Juan David
dc.contributor.advisorMéndez López, Maximiliano Ernesto
dc.contributor.authorMuñoz Fontalvo, Luis Alberto
dc.coverage.spatialBarranquillaspa
dc.creator.emailluis-munozf@unilibre.edu.cospa
dc.date.accessioned2023-08-08T20:29:02Z
dc.date.available2023-08-08T20:29:02Z
dc.date.created2023-06-10
dc.description.abstractLa nanotecnología ha venido consolidándose como una tecnología clave para una amplia gama de aplicaciones siendo una herramienta prometedora tanto en diagnóstico y terapéutica, dadas sus funciones inherentes a nanoescala sobre los componentes biológicos de las células. En la presente investigación se informa sobre la síntesis de nanopartículas de Hierro (FeNPs) usando extracto de Annona Muricata L. controladas mediante micela inversa y su eficacia antimicrobiana frente a bacterias de interés clínico. Las FeNPs biosintetizadas posiblemente esféricas, discretas y estabilizadas por entidades fitoquímicas se caracterizaron mediante espectroscopía ultravioleta visible, dispersión de la luz dinámica, espectroscopia infrarroja por transformada de Fourier. los resultados de DLS para tamaño hidrodinámico de partícula promedio es de 27.98 nm con un RSD de 4.2% usando extracto al 20 % en la síntesis controlada por micela inversa. El resultado de evaluación antimicrobiana mostró que las nanopartículas de hierro sintetizadas, a los diferentes tratamientos no presentaron halos de inhibición indiscutibles, por tanto, no tuvieron actividad antibacteriana frente a p. aeruginosa, s. aureus, enterococcus y e. colispa
dc.description.abstractenglishNanotechnology has been established as a key technology for a wide range of applications, being a promising tool in both diagnosis and therapeutics due to its inherent nano-scale functions on the biological components of cells. This research reports on the synthesis of Iron nanoparticles (FeNPs) using Annona Muricata L. extract controlled by reverse micelle and their antimicrobial efficacy against clinically relevant bacteria. The biosynthesized FeNPs, possibly spherical, discrete, and stabilized by phytochemical entities, were characterized using UV-visible spectroscopy, dynamic light scattering, and Fourier-transform infrared spectroscopy. The DLS results for the average hydrodynamic particle size were 27.98 nm with an RSD of 4.2%, using a 20% extract in the reverse micelle-controlled synthesis. The antimicrobial evaluation showed that the synthesized iron nanoparticles, under different treatments, did not exhibit clear inhibition zones; therefore, they did not demonstrate antibacterial activity against P. aeruginosa, S. aureus, Enterococcus, and E. colispa
dc.description.sponsorshipUniversidad Libre Seccional Barranquilla -- Facultad de Ciencias Exactas y Naturales -- Maestría en Biotecnologíaspa
dc.formatPDFspa
dc.identifier.urihttps://hdl.handle.net/10901/26088
dc.relation.referencesAbadie, R. E., Medina, R., Ruiz, L., & Tresierra-ayala, A. (2014). Actividad antibacteriana de extractos vegetales frente a cepas intrahospitalarias, Iquitos-Perú. 31–38. https://doi.org/https://doi.org/10.33017/RevECIPeru2014.0005spa
dc.relation.referencesAbdel-Rahman, T., Hussein, A. S., Beshir, S., Hamed, A. R., Ali, E., & El-Tanany, S. S. (2019). Antimicrobial Activity of Terpenoids Extracted from Annona muricata Seeds and its Endophytic Aspergillus niger Strain SH3 Either Singly or in Combination. Open Access Macedonian Journal of Medical Sciences, 7(19), 3127. https://doi.org/10.3889/OAMJMS.2019.793spa
dc.relation.referencesAcevedo Pizarro, B. (2015). ESTUDIO DE SISTEMAS MICELARES ORIGINADOS EN MEDIO ACUOSO POR COPOLÍMEROS ANFIFÍLICOS EN BLOQUE Y RAMIFICADOS (2015).pdf. In Tesis. http://repositorio.uchile.cl/bitstream/handle/2250/133560/Estudio-desistema-micelares-originados-en-medio-acuoso-porcopolímeros.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesAguilar-Tapia, A., & Zanella, R. (2018). Las nanopartículas bimetálicas y algunas de sus aplicaciones. Mundo Nano. Revista Interdisciplinaria En Nanociencia y Nanotecnología, 10(19), 72. https://doi.org/10.22201/CEIICH.24485691E.2017.19.61783spa
dc.relation.referencesAhn, E. Y., Jin, H., & Park, Y. (2019). Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Materials Science and Engineering C, 101(August 2018), 204–216. https://doi.org/10.1016/j.msec.2019.03.095spa
dc.relation.referencesAlabdallah, N. M., & Hasan, M. M. (2021). Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi Journal of Biological Sciences, 28(10), 5631–5639. https://doi.org/10.1016/J.SJBS.2021.05.081spa
dc.relation.referencesArmenta-González, A. J., Carrera-Cerritos, R., Moreno-Zuria, A., Álvarez-Contreras, L., Ledesma-García, J., Cuevas-Muñiz, F. M., & Arriaga, L. G. (2016). An improved ethanol microfluidic fuel cell based on a PdAg/MWCNT catalyst synthesized by the reverse micelles method. Fuel, 167, 240–247. https://doi.org/10.1016/J.FUEL.2015.11.057spa
dc.relation.referencesArmijo, L. M., Wawrzyniec, S. J., Kopciuch, M., Brandt, Y. I., Rivera, A. C., Withers, N. J., Cook, N. C., Huber, D. L., Monson, T. C., Smyth, H. D. C., & Osiński, M. (2020). Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. Journal of Nanobiotechnology, 18(1). https://doi.org/10.1186/S12951-020-0588-6spa
dc.relation.referencesArreche, R. A., Montes de Oca-Vásquez, G., Vega-Baudrit, J. R., & Vázquez, P. G. (2020). Synthesis of Silver Nanoparticles Using Extracts from Yerba Mate (Ilex paraguariensis) Wastes. Waste and Biomass Valorization, 11(1), 245–253. https://doi.org/10.1007/s12649-018-0394-7spa
dc.relation.referencesAsghar, M. A., Zahir, E., Arif, M., Id, A., Iqbal, J., & Rehman, A. (2020). characterization of iron , copper and silver nanoparticles using Syzygium cumini leaf extract : As an effective antimicrobial and aflatoxin B 1 adsorption agents. 1–17. 63 https://doi.org/10.1371/journal.pone.0234964spa
dc.relation.referencesAvilés, J., Locarno-lara, E., & González-Delgado, Á. D. (2020). Exergetic analysis of TiO 2 nanoparticle production from lemongrass and titanium isopropoxide. Prospectiva, 18.2spa
dc.relation.referencesBadmus, J. A., Oyemomi, S. A., Adedosu, O. T., Yekeen, T. A., Azeez, M. A., Adebayo, E. A., Lateef, A., Badeggi, U. M., Botha, S., Hussein, A. A., & Marnewick, J. L. (2020). Photo-assisted bio-fabrication of silver nanoparticles using Annona muricata leaf extract: exploring the antioxidant, anti-diabetic, antimicrobial, and cytotoxic activities. Heliyon, 6(11). https://doi.org/10.1016/J.HELIYON.2020.E05413spa
dc.relation.referencesBaetke, S. C., Lammers, T., & Kiessling, F. (2015). Applications of nanoparticles for diagnosis and therapy of cancer. The British Journal of Radiology, 88(1054). https://doi.org/10.1259/BJR.20150207spa
dc.relation.referencesBahrulolum, H., Nooraei, S., Javanshir, N., Tarrahimofrad, H., Mirbagheri, V. S., Easton, A. J., & Ahmadian, G. (2021). Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. Journal of Nanobiotechnology, 19(86), 1–26. https://doi.org/10.1186/S12951-021-00834-3spa
dc.relation.referencesBaig, M. M., Yousuf, M. A., Zulfiqar, S., Safeer, A., Agboola, P. O., Shakir, I., & Warsi, M. F. (2021). Structural and electrical properties of La3+ ions substituted MnFe2O4 ferrite nanoparticles synthesized via cost-effective reverse micelles strategy. Materials Research Express, 8(3). https://doi.org/10.1088/2053-1591/ABD73Bspa
dc.relation.referencesBaig, N., Kammakakam, I., Falath, W., & Kammakakam, I. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. https://doi.org/10.1039/d0ma00807aspa
dc.relation.referencesBaláž, P., Achimovičová, M., Baláž, M., Billik, P., Cherkezova-Zheleva, Z., Criado, J. M., Delogu, F., Dutková, E., Gaffet, E., Gotor, F. J., Kumar, R., Mitov, I., Rojac, T., Senna, M., Streletskii, A., & Wieczorek-Ciurowa, K. (2013). Hallmarks of mechanochemistry: from nanoparticles to technology. Chemical Society Reviews, 42(18), 7571–7637. https://doi.org/10.1039/c3cs35468gspa
dc.relation.referencesBayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2020). The History of Nanoscience and Nanotechnology : From Chemical – Physical Applications to Nanomedicine. Molecules, 25(1), 1–15spa
dc.relation.referencesBelanova, A. A., Gavalas, N., Makarenko, Y. M., Belousova, M. M., Soldatov, A. V., & Zolotukhin, P. V. (2018). Physicochemical Properties of Magnetic Nanoparticles: Implications for Biomedical Applications In Vitro and In Vivo. Oncology Research and Treatment, 41(3), 139–143. https://doi.org/10.1159/000485020spa
dc.relation.referencesBellah, M., Christensen, S. M., & Iqbal, S. M. (2012). Nanostructures for Medical Diagnostics. https://doi.org/10.1155/2012/486301spa
dc.relation.referencesBernal, R., Gandestein, S. R., & Celis, M. (2020). Catálogo de plantas y líquenes de Colombia. Universidad Nacional de Colombia. https://doi.org/https://doi.org/10.15472/7avdhnspa
dc.relation.referencesBezza, F. A., Tichapondwa, S. M., & Chirwa, E. M. N. (2020). Synthesis of biosurfactant stabilized silver nanoparticles, characterization and their potential application for bactericidal purposes. Journal of Hazardous Materials, 393(October 2019), 122319. https://doi.org/10.1016/j.jhazmat.2020.122319spa
dc.relation.referencesBiswas, A., Bayer, I. S., Biris, A. S., Wang, T., Dervishi, E., & Faupel, F. (2012). Advances in top – down and bottom – up surface nanofabrication : Techniques , 64 applications & future prospects. Advances in Colloid and Interface Science, 170(1– 2), 2–27. https://doi.org/10.1016/j.cis.2011.11.001spa
dc.relation.referencesBorcherding, J., Baltrusaitis, J., Chen, H., Stebounova, L., Wu, C. M., Rubasinghege, G., Mudunkotuwa, I. A., Caraballo, J. C., Zabner, J., Grassian, V. H., & Comellas, A. P. (2014). Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environmental Science. Nano, 1(2), 123. https://doi.org/10.1039/C3EN00029spa
dc.relation.referencesBoutonnet, M., Kizling, J., Stenius, P., & Maire, G. (1982). The preparation of monodisperse colloidal metal particles from microemulsions. Colloids and Surfaces, 5(3), 209–225. https://doi.org/10.1016/0166-6622(82)80079-6spa
dc.relation.referencesBustos, R. H. (2020, May 26). La nanotecnología, una solución eficaz para el cuidado de la salud. https://www.unisabana.edu.co/programas/carreras/facultad-demedicina/medicina/noticias/detalle-de-noticias/noticia/la-nanotecnologia-unasolucion-eficaz-para-el-cuidado-de-la-saludspa
dc.relation.referencesCavazzini, G., Cugini, F., Delmonte, D., Trevisi, G., Nasi, L., Ener, S., Koch, D., Righi, L., Solzi, M., Gutfleisch, O., & Albertini, F. (2021). Multifunctional Ni-Mn-Ga and NiMn-Cu-Ga Heusler particles towards the nanoscale by ball-milling technique. Journal of Alloys and Compounds, 872, 159747. https://doi.org/10.1016/j.jallcom.2021.159747spa
dc.relation.referencesChan, P., Ah, R., Mh, K., & A, Z. (2010). Anti-arthritic activities of Annona muricata L. leaves extract on complete Freund’s adjuvant (CFA) – induced arthritis in rats. Planta Medica, 76(12), P166. https://doi.org/10.1055/S-0030-1264464spa
dc.relation.referencesCórdova-Cisneros, K. C. (2021). Revista Mexicana de I ngeniería Q uímica. 8(3spa
dc.relation.referencesDas Nelaturi, P., Huthur Sriramaia, N., Nagaraj, S., Subbaiah Kotakadi, V., Veetil Veeran, A., & Pamidimukkala, Kiranmayee Pamidimukkala, K. (2017). An in-vitro Cytotoxic and Genotoxic Properties of Allamanda Cathartica L. Latex Green NPs on Human Peripheral Blood Mononuclear Cells. Nano Biomed Eng, 9(4), 314–323. https://doi.org/10.5101/nbe.v9i4.p314-323.1spa
dc.relation.referencesDeshmukh, A. R., Gupta, A., & Kim, B. S. (2019). Ultrasound Assisted Green Synthesis of Silver and Iron Oxide Nanoparticles Using Fenugreek Seed Extract and Their Enhanced Antibacterial and Antioxidant Activities. 2019. https://doi.org/10.1155/2019/1714358spa
dc.relation.referencesDinali, R., Ebrahiminezhad, A., Manley-harris, M., Ghasemi, Y., & Berenjian, A. (2017). Critical Reviews in Microbiology Iron oxide nanoparticles in modern microbiology and biotechnology. Critical Reviews in Microbiology, 0(0), 000. https://doi.org/10.1080/1040841X.2016.1267708spa
dc.relation.referencesDoolittle, J. W., & Dutta, P. K. (2006). Influence of microwave radiation on the growth of gold nanoparticles and microporous zincophosphates in a reverse micellar system. Langmuir, 22(10), 4825–4831. https://doi.org/10.1021/la060047spa
dc.relation.referencesDrummer, S., Madzimbamuto, T., & Chowdhury, M. (2021). Green Synthesis of Transition-Metal Nanoparticles and Their Oxides : A Review. Materials, 14(11). /pmc/articles/PMC8196554/%0A/pmc/articles/PMC8196554/?report=abstract %0Ahttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196554spa
dc.relation.referencesEbrahiminezhad, A., Davaran, S., Rasoul-amini, S., Barar, J., & Moghadam, M. (2012). Synthesis , Characterization and Anti- Listeria monocytogenes Effect of Amino Acid Coated Magnetite Nanoparticles. 868–874spa
dc.relation.referencesEbrahiminezhad, A., Zare, A., Ajit, H., Saeed, K. S., & Younes, T. (2018). Plant - Mediated Synthesis and Applications of Iron Nanoparticles. Molecular Biotechnology, 60(2), 154–168. https://doi.org/10.1007/s12033-017-0053-4spa
dc.relation.referencesEl-Seedi, H. R., El-Shabasy, R. M., Khalifa, S. A. M., Saeed, A., Shah, A., Shah, R., Iftikhar, F. J., Abdel-Daim, M. M., Omri, A., Hajrahand, N. H., Sabir, J. S. M., Zou, X., Halabi, M. F., Sarhan, W., & Guo, W. (2019). Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Advances, 9(42), 24539–24559. https://doi.org/10.1039/c9ra02225bspa
dc.relation.referencesErrayes, A., Mohammed, W., Errayes, A. O., Abdussalam-Mohammed, W., & Darwish, M. O. (2020). Review of Phytochemical and Medical Applications of Annona Muricata Fruits. Journal of Chemical Reviews, 2(1), 70–79. https://doi.org/10.33945/SAMI/JCR.2020.1.5spa
dc.relation.referencesEscudero, A., Carrillo-carri, C., Romero-ben, E., Franco, A., Rosales-barrios, C., Castillejos, M. C., & Khiar, N. (2021). Molecular Bottom-Up Approaches for the Synthesis of Inorganic and Hybrid Nanostructures. Inorganics, 9(7), 58spa
dc.relation.referencesEzealisiji, K. M., Noundou, X. S., & Ukwueze, S. E. (2017). Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of annona muricata linn and their antimicrobial activity. Applied Nanoscience (Switzerland), 7(8), 905–911. https://doi.org/10.1007/S13204-017- 0632-5/FIGURES/7spa
dc.relation.referencesFarouk, F., Abdelmageed, M., Azam, M., & Azzazy, H. M. E. (2019). Synthesis of magnetic iron oxide nanoparticles using pulp and seed aqueous extract of Citrullus colocynth and evaluation of their antimicrobial activity. Biotechnology Letters, 7. https://doi.org/10.1007/s10529-019-02762-7spa
dc.relation.referencesGarcía Negrete, C., & Paucar Álvarez, C. (2009). SÍNTESIS DE NANOPARTÍCULAS DE Ca 10 (PO 4 ) 6 (OH) 2 Y Al 2 O 3 PARA EL UNIVERSIDAD NACIONAL DE COLOMBIASEDE MEDELLÍN. https://repositorio.unal.edu.co/handle/unal/70305spa
dc.relation.referencesGavamukulya, Y., Maina, E. N., Meroka, A. M., Madivoli, E. S., El-Shemy, H. A., Wamunyokoli, F., & Magoma, G. (2020). Green Synthesis and Characterization of Highly Stable Silver Nanoparticles from Ethanolic Extracts of Fruits of Annona muricata. Journal of Inorganic and Organometallic Polymers and Materials, 30(4), 1231–1242. https://doi.org/10.1007/s10904-019-01262-5spa
dc.relation.referencesGómez-Garzón, M. (2018). Nanomateriales, nanopartículas y síntesis verde. Revista Repertorio de Medicina y Cirugía, 27(2), 75–80. https://doi.org/10.31260/repertmedcir.v27.n2.2018.191spa
dc.relation.referencesGómez Garzón, M. (2019). Usos terapéuticos de nanomateriales y nanopartículas. Revista Repertorio de Medicina y Cirugía, 28(1), 5–11. https://doi.org/10.31260/repertmedcir.v28.n1.2019.871spa
dc.relation.referencesGonzález-Pedroza, M. G., Argueta-Figueroa, L., García-Contreras, R., Jiménez-Martínez, Y., Martínez-Martínez, E., Navarro-Marchal, S. A., Marchal, J. A., Morales-Luckie, R. A., & Boulaiz, H. (2021). Silver Nanoparticles from Annona muricata Peel and Leaf Extracts as a Potential Potent, Biocompatible and Low Cost Antitumor Tool. Nanomaterials, 11(5). https://doi.org/10.3390/NANO11051273spa
dc.relation.referencesGutiérrez-Santana, J. C., Toscano-Garibay, J. D., López-López, M., & Coria-Jiménez, V. R. (2020). Aptamers coupled to nanoparticles in the diagnosis and treatment of microbial infections. Enfermedades Infecciosas y Microbiologia Clinica (English 66 Ed.), 38(7), 331–337. https://doi.org/10.1016/j.eimce.2020.05.001spa
dc.relation.referencesHasrat, J. A., Peters, L., De Backer, J. P., Vauquelin, G., & Vlietinck, A. J. (1997). Screening of medicinal plants from Suriname for 5-HT1A ligands: Bioactive isoquinoline alkaloids from the fruit of Annona muricata. Phytomedicine, 4(2), 133–140. https://doi.org/10.1016/S0944-7113(97)80059-1spa
dc.relation.referencesHeikkila, R. E., & Cabbat, F. S. (1983). Ascorbate-Induced Lipid Peroxidation and Inhibition of [3H]Spiroperidol Binding in Neostriatal Membrane Preparations. Journal of Neurochemistry, 41(5), 1384–1392. https://doi.org/10.1111/J.1471- 4159.1983.TB00836.Xspa
dc.relation.referencesHekmati, M., Hasanirad, S., Khaledi, A., & Esmaeili, D. (2020). Green synthesis of silver nanoparticles using extracts of Allium rotundum l, Falcaria vulgaris Bernh, and Ferulago angulate Boiss, and their antimicrobial effects in vitro. Gene Reports, 19(January), 100589. https://doi.org/10.1016/j.genrep.2020.100589spa
dc.relation.referencesHulla, J. E., Sahu, S. C., & Hayes, A. W. (2015). Nanotechnology : History and future. 34(12), 1318–1321. https://doi.org/10.1177/0960327115603588spa
dc.relation.referencesHuynh, K., Pham, X., Kim, J., Lee, S. H., Chang, H., Rho, W., & Jun, B. (2020). Synthesis , Properties , and Biological Applications of Metallic Alloy Nanoparticles. International Journal of Molecular Sciences, 21(14), 1–29. /pmc/articles/PMC7404399/%0A/pmc/articles/PMC7404399/?report=abstract %0Ahttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404399spa
dc.relation.referencesIbrahim, R. M., Markom, M., & Abdullah, H. (2014). Optical Properties of Ni2+-, Co2+-, and Mn2+-doped ZnS Nanoparticles Synthesized Using Reverse Micelle Method. ECS Journal of Solid State Science and Technology, 4(2). https://doi.org/10.1149/2.0181502JSSspa
dc.relation.referencesIndiarto, R., Indriana, L. P. A., Andoyo, R., Subroto, E., & Nurhadi, B. (2021). Bottom–up nanoparticle synthesis: a review of techniques, polyphenol-based core materials, and their properties. European Food Research and Technology 2021, 1–24. https://doi.org/10.1007/S00217-021-03867-Yspa
dc.relation.referencesIQBAL, Y., BAE, H., AHMAD, A., RHEE*, I., & HONG, S. (2015). Silica-coated Cobalt Ferrite Nanoparticles for Magnetic Hyperthermia. New Physics: Sae Mulli, 65, 147–151. https://doi.org/10.3938/NPSM.65.147spa
dc.relation.referencesJain, N., Jain, P., Rajput, D., & Patil, U. K. (2021). Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. Micro and Nano Systems Letters, 9(1), 1–24. https://doi.org/10.1186/S40486-021- 00131-6spa
dc.relation.referencesJaramillo Gómez, N. I. (2014). Encapsulación de un fármaco en nanopartículas de sílice sintetizadas vía sol – gel asistido por microemulsión de micelas inversas [Universidad Nacional]. https://repositorio.unal.edu.co/handle/unal/47615spa
dc.relation.referencesJaramillo, N. I. (2013). Encapsulación de un fármaco en nanopartículas de sílice sintetizadas vía sol-gel asistido por microemulsión de micelas inversas (p. 108). http://www.bdigital.unal.edu.co/40923/1/43987191.2014.pdfspa
dc.relation.referencesKarpagavinayagam, P., & Vedhi, C. (2019). Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum, 160, 286–292. https://doi.org/10.1016/j.vacuum.2018.11.043spa
dc.relation.referencesKitchens, C. L., McLeod, M. C., & Roberts, C. B. (2005). Chloride ion effects on synthesis and directed assembly of copper nanoparticles in liquid and compressed alkane 67 microemulsions. Langmuir, 21(11), 5166–5173. https://doi.org/10.1021/la047785xspa
dc.relation.referencesKumar, U., Kaviraj, M., Rout, S., Chakraborty, K., Swain, P., Nayak, P. K., & Nayak, A. K. (2021). Combined application of ascorbic acid and endophytic N-fixing Azotobacter chroococcum Avi2 modulates photosynthetic efficacy, antioxidants and growth-promotion in rice under moisture deficit stress. Microbiological Research, 250spa
dc.relation.referencesLaane, C. (1985). Reverse micelles: Biological and technological relevance of amphiphilic structures in apolar media. In Trends in Biotechnology (Vol. 3, Issue 1). https://doi.org/10.1016/0167-7799(85)90075-7spa
dc.relation.referencesLewis, K. (2020). The Science of Antibiotic Discovery. Cell, 181(1), 29–45. https://doi.org/10.1016/J.CELL.2020.02.056spa
dc.relation.referencesLi, B., & Lane, L. A. (2019). Probing the biological obstacles of nanomedicine with gold nanoparticles. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 11(3). https://doi.org/10.1002/WNAN.1542spa
dc.relation.referencesLifang, M., Xinran, S., Yongchun, Y., & Chen, Y. (2021). Two-Dimensional Silicene / Silicon Nanosheets : An Emerging Silicon-Composed Nanostructure in Biomedicine. Advanced Materials, 33(31), 1–16. https://doi.org/10.1002/adma.202008226spa
dc.relation.referencesLiu, Y., Friesen, J. B., McAlpine, J. B., & Pauli, G. F. (2015). Solvent System Selection Strategies in Countercurrent Separation. Planta Medica, 81(17), 1582. https://doi.org/10.1055/S-0035-1546246spa
dc.relation.referencesLohrasbi, S., Amin, M., Kouhbanani, J., Beheshtkhoo, N., & Ghasemi, Y. (2019). Green Synthesis of Iron Nanoparticles Using Plantago major Leaf Extract and Their Application as a Catalyst for the Decolorization of Azo Dyespa
dc.relation.referencesLone, I. H., Radwan, N. R. E., Aslam, J., & Akhter, A. (2018). Concept of Reverse Micelle Method For the Synthesis of Nano-Structured Materials. Current Nanoscience, 15(2), 129–136. https://doi.org/10.2174/1573413714666180611075115spa
dc.relation.referencesMachowska, A., & Lundborg, C. S. (2019). Drivers of irrational use of antibiotics in Europe. International Journal of Environmental Research and Public Health, 16(1). https://doi.org/10.3390/ijerph16010027spa
dc.relation.referencesMadubuonu, N., Aisida, S. O., Ali, A., Ahmad, I., & Zhao, T. (2019). Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja- Moringa oleifera and their antibacterial and photocatalytic study. Journal of Photochemistry & Photobiology, B: Biology, 199(July), 111601. https://doi.org/10.1016/j.jphotobiol.2019.111601spa
dc.relation.referencesMajerič, P., & Rudolf, R. (2020). Advances in Ultrasonic Spray Pyrolysis Processing of. Materials, 13(16), 3485spa
dc.relation.referencesMakarov, V. V, Makarova, S. S., Love, A. J., Sinitsyna, O. V, Dudnik, A. O., Yaminsky, I. V, Taliansky, M. E., & Kalinina, N. O. (2014). Biosynthesis of Stable Iron Oxide Nanoparticles in Aqueous Extracts of Hordeum vulgare and Rumex acetosa Plantsspa
dc.relation.referencesMaldonado Vega, G., Olivero Sierra, M., & Rodríguez Macías, J. (2021). COMPOSICIÓN QUÍMICA Y ACTIVIDADES BIOLÓGICAS DE Annona muricata L [Unilibre]. https://hdl.handle.net/10901/23784spa
dc.relation.referencesMandal, S., & De, S. (2016). Copper nanoparticles in AOT “revisited”-direct micelles versus reverse micelles. In Materials Chemistry and Physics (Vol. 183, pp. 410– 68 421). Elsevier Ltd. https://doi.org/10.1016/j.matchemphys.2016.08.046spa
dc.relation.referencesMansoori, G. A., & Soelaiman, T. A. F. (2005). Nanotechnology – An Introduction for the Standards Community. Journal of ASTM International, 2(6), 1–21spa
dc.relation.referencesMaría, N. A., & Patricia, H. A. (2017). Evaluación de la propiedad antimicrobial de las nanopartículas de oro sintetizadas con extractos de tamarindus indica L y mangifera indica L Evaluation of the antimicrobial property of gold nanoparticles synthesized with. número 4, 389–398spa
dc.relation.referencesMasteri-Farahani, M., & Ghorbani, M. (2016). Heteropolytungstate nanoparticles: Microemulsion-mediated preparation and investigation of their catalytic activity in the epoxidation of olefins. Materials Research Bulletin, 76, 332–337. https://doi.org/10.1016/J.MATERRESBULL.2015.12.036spa
dc.relation.referencesMayadeen, A. (2022, June 22). La OMS alerta de que el desarrollo de nuevos antibióticos está “estancado” | Noticias ONU. https://news.un.org/es/story/2022/06/1510742spa
dc.relation.referencesMbuyi, P. L., Assumani, Z., Za, J., Ntezolo, N., Kabasele, D. M., Wale, S., Massamba, P., Lesse, M., Kiala, R. I., Sansi Nzinga, P., Mananga Bongo, R., Mbembo, B., Mbembo, W., Divengi, J.-P. N., Biduaya Mukeba, F., Longo, B. M., Manzo Lusakibanza, M., Kapepula Mutwale, P., & Kahunu Mesia, G. (2022). Annona muricata (Graviola) (Annonaceae): Phytochemistry, Pharmacology and Future Directions, a Review. Asian Plant Research Journal, 10(1), 9–45. https://doi.org/10.9734/APRJ/2022/V10I1181spa
dc.relation.referencesMelot, A., Fall, D., Gleye, C., & Champy, P. (2009). Apolar Annonaceous Acetogenins from the Fruit Pulp of Annona muricata. Molecules, 14(11), 4387. https://doi.org/10.3390/MOLECULES14114387spa
dc.relation.referencesMenger, F. M. (1979). On the Structure of Micelles. Accounts of Chemical Research, 12(4), 111–117. https://doi.org/10.1021/ar50136a001spa
dc.relation.referencesMerkoçi, A., Marín, S., Castãeda, M. T., Pumera, M., Ros, J., & Alegret, S. (2006). Crystal and electrochemical properties of water dispersed CdS nanocrystals obtained via reverse micelles and arrested precipitation. Nanotechnology, 17(10), 2553–2559. https://doi.org/10.1088/0957-4484/17/10/019spa
dc.relation.referencesMiethke, M., & Marahiel, M. A. (2007). Siderophore-Based Iron Acquisition and Pathogen Control. 71(3), 413–451. https://doi.org/10.1128/MMBR.00012-07spa
dc.relation.referencesMitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews. Drug Discovery, 20(2), 101–124. https://doi.org/10.1038/S41573-020-0090-8spa
dc.relation.referencesMoghadamtousi, S. Z., Fadaeinasab, M., Nikzad, S., Mohan, G., Ali, H. M., & Kadir, H. A. (2015). Annona muricata (Annonaceae): A Review of Its Traditional Uses, Isolated Acetogenins and Biological Activities. International Journal of Molecular Sciences, 16(7), 15625. https://doi.org/10.3390/IJMS160715625spa
dc.relation.referencesMohammad Soleimani Zohr Shiri, W. H. and M. R. M. (2019). Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble. Materials, 12, 1–8spa
dc.relation.referencesMonclou-Salcedo, S. A., Correa-Torres, S. N., Kopytko, M. I., Santoyo-Muñóz, C., VesgaGuzmán, D. M., Castellares-Lozano, R., López-Amaris, M., Saavedra-Mancera, A. D., Herrera-Barros, A. P., Monclou-Salcedo, S. A., Correa-Torres, S. N., Kopytko, M. I., Santoyo-Muñóz, C., Vesga-Guzmán, D. M., Castellares-Lozano, R., López-Amaris, 69 M., Saavedra-Mancera, A. D., & Herrera-Barros, A. P. (2020). Evaluación antifúngica de nanopartículas de TiO2 para inhibición de Fusarium solani en Palma Africana. International Journal of Agriculture and Natural Resources, 47(2), 126–133. https://doi.org/10.7764/IJANR.V47I2.2170spa
dc.relation.referencesMonti, G. A., Fernández, G. A., Correa, N. M., Falcone, R. D., Moyano, F., & Silbestri, G. F. (2017). Gold nanoparticles stabilized with sulphonated imidazolium salts in water and reverse micelles. Royal Society Open Science, 4(7). https://doi.org/10.1098/RSOS.170481spa
dc.relation.referencesMosquera, E., Montero, P., Gomez, C., & Gimenez, B. (2014). NANOENCAPSULACIÓN DE HIDROLIZADOS PEPTÍDICOS CON ACTIVIDADES BIOLÓGICAS PROCEDENTES DE SUBPRODUCTOS DE LA PESCA. https://www.researchgate.net/publication/263180788_NANOENCAPSULACION_ DE_HIDROLIZADOS_PEPTIDICOS_CON_ACTIVIDADES_BIOLOGICAS_PROCEDENT ES_DE_SUBPRODUCTOS_DE_LA_PESCAspa
dc.relation.referencesMosselhy, D. A., Assad, M., Sironen, T., & Elbahri, M. (2021). Nanotheranostics: A possible solution for drug-resistant staphylococcus aureus and their biofilms? Nanomaterials, 11(1), 1–36. https://doi.org/10.3390/nano11010082spa
dc.relation.referencesNajahi-Missaoui, W., Arnold, R. D., & Cummings, B. S. (2021). Safe Nanoparticles: Are We There Yet? International Journal of Molecular Sciences, 22(1), 1–22. https://doi.org/10.3390/IJMS22010385spa
dc.relation.referencesNath, S., Jana, S., Pradhan, M., & Pal, T. (2010). Ligand-stabilized metal nanoparticles in organic solvent. Journal of Colloid And Interface Science, 341(2), 333–352. https://doi.org/10.1016/j.jcis.2009.09.049spa
dc.relation.referencesNational nanotechnology initiative. (2021). Qué es la nanotecnologíaspa
dc.relation.referencesNavarrete Barragán, N. A., Pita-Ospina, E. F., Sánchez Mora., R. M., Giraldo Quintero, S. E., & Bernal Lizarazú, M. C. (2020). Actividad in vitro de los extractos etanólicos de Lantana camara L., Petiveria alliacea L. y Lippia dulcis T. frente a bacterias patógenas. Nova, 18(33), 53–71. https://doi.org/10.22490/24629448.3700spa
dc.relation.referencesNgom, I., Ngom, B. D., Sackey, J., & Khamlich, S. (2020). Biosynthesis of zinc oxide nanoparticles using extracts of Moringa Oleifera: Structural & optical properties. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.05.323spa
dc.relation.referencesObjetivos y metas de desarrollo sostenible - Desarrollo Sostenible. (2021). https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollososteniblespa
dc.relation.referencesOdintsov, A. A., Revina, A. A., Zhavoronkova, K. N., & Boeva, O. A. (2016). Catalytic Properties of Gold Nanoparticles Prepared in Reverse Micelles. Protection of Metals and Physical Chemistry of Surfaces 2016 52:2, 52(2), 223–226. https://doi.org/10.1134/S2070205116020210spa
dc.relation.referencesOkkeh, M., Bloise, N., Restivo, E., De Vita, L., Pallavicini, P., & Visai, L. (2021). Gold nanoparticles: Can they be the next magic bullet for multidrug-resistant bacteria? Nanomaterials, 11(2), 1–30. https://doi.org/10.3390/nano11020312spa
dc.relation.referencesOnitsuka, S., Hamada, T., & Okamura, H. (2019). Preparation of antimicrobial gold and silver nanoparticles from tea leaf extracts. Colloids and Surfaces B: Biointerfaces, 173(September 2018), 242–248. https://doi.org/10.1016/j.colsurfb.2018.09.055spa
dc.relation.referencesOrellano, M. S., Longo, G. S., Porporatto, C., Correa, N. M., & Falcone, R. D. (2020). Role of micellar interface in the synthesis of chitosan nanoparticles formulated by 70 reverse micellar method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 599. https://doi.org/10.1016/j.colsurfa.2020.124876spa
dc.relation.referencesPabón-guerrero, S. E., Benítez-benítez, R., Sarria-villa, R. A., & Antonio, J. (2021). Synthesis of iron oxide nanoparticles using aqueous extract of Eucalyptus grandis • Síntesis de nanopartículas de óxido de hierro usando extracto acuoso de Eucalyptus grandis. 88(216), 220–226spa
dc.relation.referencesPan, S., Li, X., & Yadav, J. (2021). Single-nanoparticle spectroelectrochemistry studies enabled by localized surface plasmon resonance. Physical Chemistry Chemical Physics, 23(35), 19120–19129. https://doi.org/10.1039/D1CP02801Dspa
dc.relation.referencesPan, Z., Lin, Y., Sarkar, B., Owens, G., & Chen, Z. (2020). Green synthesis of iron nanoparticles using red peanut skin extract: Synthesis mechanism, characterization and effect of conditions on chromium removal. Journal of Colloid and Interface Science, 558, 106–114. https://doi.org/10.1016/J.JCIS.2019.09.106spa
dc.relation.referencesPaola, D., Ardila, R., & Pataquiva-mateus, A. (2019). Síntesis de nanopartículas de magnetita a partir del extracto de cáscara de papaya para la degradación de colorantes azoicos en soluciones acuosas Synthesis of magnetite nanoparticles using papaya peel extract. 27, 431–442spa
dc.relation.referencesPark, B., Kim, J., Lee, J. Y., Bhang, S. H., Mun, J., & Yu, T. (2018). Studies on the Change of Lithium Ion Battery Performance According to Length and Type of Surfactant on the Surface of Manganese Oxide Nanoparticles Prepared by Reverse Micelle Method. Macromolecular Research , 26(12), 1167–1172. https://doi.org/10.1007/S13233-018-6147-4spa
dc.relation.referencesPileni, M. P. (1993). Reverse micelles as microreactors. Journal of Physical Chemistry, 97(27), 6961–6973. https://doi.org/10.1021/j100129a008spa
dc.relation.referencesPileni, M. P. (2003). The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Materials, 2(3), 145–150. https://doi.org/10.1038/nmat817spa
dc.relation.referencesPlan Nacional de Desarrollo 2018-2022. (n.d.). Retrieved December 6, 2021, from https://colaboracion.dnp.gov.co/CDT/Prensa/Resumen-PND2018-2022-final.pdfspa
dc.relation.referencesPopovetskiy, P. S., & Kolodin, A. N. (2020). Hydrodynamic Diameter of Silver Nanoparticles in Solutions of Nonionic Surfactants. Russian Journal of Physical Chemistry A 2020 94:10, 94(10), 2126–2134. https://doi.org/10.1134/S0036024420100246spa
dc.relation.referencesPoulose, S., Panda, T., Nair, P. P., & Théodore, T. (2014). Biosynthesis of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 14(2), 2038–2049. https://doi.org/10.1166/jnn.2014.9019spa
dc.relation.referencesQasim, S., Zafar, A., Saif, M. S., Ali, Z., Nazar, M., Waqas, M., Haq, A. U., Tariq, T., Hassan, S. G., Iqbal, F., Shu, X. G., & Hasan, M. (2020). Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity. Journal of Photochemistry and Photobiology B: Biology, 204(September 2019), 111784. https://doi.org/10.1016/j.jphotobiol.2020.111784spa
dc.relation.referencesRady, I., Bloch, M. B., Chamcheu, R. C. N., Banang Mbeumi, S., Anwar, M. R., Mohamed, H., Babatunde, A. S., Kuiate, J. R., Noubissi, F. K., El Sayed, K. A., Whitfield, G. K., & Chamcheu, J. C. (2018). Anticancer Properties of Graviola (Annona muricata): A Comprehensive Mechanistic Review. Oxidative Medicine and Cellular Longevity, 71 2018. https://doi.org/10.1155/2018/1826170spa
dc.relation.referencesRanoszek-Soliwoda, K., Tomaszewska, E., Małek, K., Celichowski, G., Orlowski, P., Krzyzowska, M., & Grobelny, J. (2019). The synthesis of monodisperse silver nanoparticles with plant extracts. Colloids and Surfaces B: Biointerfaces, 177(October 2018), 19–24. https://doi.org/10.1016/j.colsurfb.2019.01.037spa
dc.relation.referencesRidley, R. E., Fathi-Kelly, H., Kelly, J. P., Vasquez, V. R., & Graeve, O. A. (2020). Predicting the size of salt-containing aqueous Na-AOT reverse micellar water-inoil microemulsions with consideration for specific ion effects. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2020.11.007spa
dc.relation.referencesSaad, A. M., El-Saadony, M. T., El-Tahan, A. M., Sayed, S., Moustafa, M. A. M., Taha, A. E., Taha, T. F., & Ramadan, M. M. (2021). Polyphenolic extracts from pomegranate and watermelon wastes as substrate to fabricate sustainable silver nanoparticles with larvicidal effect against Spodoptera littoralis. Saudi Journal of Biological Sciences, 28(10), 5674–5683. https://doi.org/10.1016/j.sjbs.2021.06.011spa
dc.relation.referencesSalabat, A., & Saydi, H. (2012). A theoretical approach for estimation of ultimate size of bimetallic nanocomposites synthesized in microemulsion systems. Russian Journal of Physical Chemistry A, 86(13), 2014–2017. https://doi.org/10.1134/S003602441213002Xspa
dc.relation.referencesSamari, F., Parkhari, P., Eftekhar, E., Mohseni, F., & Yousefinejad, S. (2019). Antioxidant, cytotoxic and catalytic degradation efficiency of controllable phytosynthesised silver nanoparticles with high stability using Cordia myxa extract. Journal of Experimental Nanoscience , 14(1), 141–159. https://doi.org/10.1080/17458080.2019.1687883spa
dc.relation.referencesSantos, C. S. C., Gabriel, B., Blanchy, M., Menes, O., García, D., Blanco, M., Arconada, N., & Neto, V. (2015). Industrial Applications of Nanoparticles - A Prospective Overview. Materials Today: Proceedings, 2(1), 456–465. https://doi.org/10.1016/j.matpr.2015.04.056spa
dc.relation.referencesScholz, N., Behnke, T., & Resch-Genger, U. (2018). Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension—A Method Comparison. Journal of Fluorescence , 28, 465–476. https://doi.org/10.1007/S10895-018-2209-4spa
dc.relation.referencesSethi, A., Ahmad, M., Huma, T., Khalid, I., & Ahmad, I. (2021). Evaluation of Low Molecular Weight Cross Linked Chitosan Nanoparticles, to Enhance the Bioavailability of 5-Flourouracil: SAGE, 19(2). https://doi.org/10.1177/15593258211025353spa
dc.relation.referencesShaker, L., Alimardani, V., & Mohammad, A. (2021). Heliyon Green synthesis of ironbased nanoparticles using Chlorophytum comosum leaf extract : methyl orange dye degradation and antimicrobial properties. Heliyon, 7(September 2020), e06159. https://doi.org/10.1016/j.heliyon.2021.e06159spa
dc.relation.referencesSharma, B., & Deswal, R. (2018). Single pot synthesized gold nanoparticles using Hippophae rhamnoides leaf and berry extract showed shape-dependent differential nanobiotechnological applications. Artificial Cells, Nanomedicine and Biotechnology, 46(sup2), 408–418. https://doi.org/10.1080/21691401.2018.1458034spa
dc.relation.referencesSheel, R., Kumari, P., Kumar, P., & Jawed, D. (2020). Molecular intrinsic proximal interaction infer oxidative stress and apoptosis modulated in vivo 72 biocompatibility of P . niruri contrived antibacterial iron oxide nanoparticles with zebra fi sh *. Environmental Pollution, 267, 115482. https://doi.org/10.1016/j.envpol.2020.115482spa
dc.relation.referencesShi, Y., Zhang, X., Zhu, Y., Tan, H., Chen, X., & Lu, Z.-H. (2016). Core–shell structured nanocomposites Ag@CeO2 as catalysts for hydrogenation of 4-nitrophenol and 2- nitroaniline. RSC Advances, 6(53), 47966–47973. https://doi.org/10.1039/C6RA00631Kspa
dc.relation.referencesShiri, M. S. Z., Henderson, W., & Mucalo, M. R. (2019). A review of the lesser-studied microemulsion-based synthesis methodologies used for preparing nanoparticle systems of the noble metals, Os, Re, Ir and Rh. In Materials (Vol. 12, Issue 12). MDPI AG. https://doi.org/10.3390/ma12121896spa
dc.relation.referencesShrestha, L. K., Shrestha, R. G., Vilanova, N., Rodriguez-Abreu, C., & Ariga, K. (2014). Insitu formation of silver nanoparticles using nonionic surfactant reverse micelles as nanoreactors. In Journal of Nanoscience and Nanotechnology (Vol. 14, Issue 3, pp. 2238–2244). https://doi.org/10.1166/jnn.2014.8548spa
dc.relation.referencesSmetana, A. B., Wang, J. S., Boeckl, J., Brown, G. J., & Wai, C. M. (2007). Fine-tuning size of gold nanoparticles by cooling during reverse micelle synthesis. Langmuir, 23(21), 10429–10432. https://doi.org/10.1021/la701229qspa
dc.relation.referencesSon, J. H., & Bae, D. S. (2015). Synthesis and characterization of NiAl2O4 inorganic pigment nanoparticles by a reverse micelle processing. Korean Journal of Materials Research, 25(2), 95–99. https://doi.org/10.3740/MRSK.2015.25.2.95spa
dc.relation.referencesSun, S., Liu, J., Kadouh, H., Sun, X., & Zhou, K. (2014). Three new anti-proliferative Annonaceous acetogenins with mono-tetrahydrofuran ring from graviola fruit (Annona muricata). Bioorganic & Medicinal Chemistry Letters, 24(12), 2773–2776. https://doi.org/10.1016/J.BMCL.2014.03.099spa
dc.relation.referencesSyed Najmuddin, S. U. F., Romli, M. F., Hamid, M., Alitheen, N. B., & Abd Rahman, N. M. A. N. (2016). Anti-cancer effect of Annona Muricata Linn Leaves Crude Extract (AMCE) on breast cancer cell line. BMC Complementary and Alternative Medicine, 16(1). https://doi.org/10.1186/S12906-016-1290-Yspa
dc.relation.referencesTabla y gráfico de espectros infrarrojos de MerK. (2023). Tabla y gráfico de espectros infrarrojos, Sigma Aldrich. S.F. https://www.sigmaaldrich.com/CO/es/technicaldocuments/technical-article/analytical-chemistry/photometry-andreflectometry/ir-spectrum-tablespa
dc.relation.referencesTirado, D. F., Acevedo, D., Herrera, A. P., & Herrera, A. (2015). Modeling the interaction energy of silica nanoparticles prepared in microemulsionsspa
dc.relation.referencesUllah, A., Yuan, Q., Ahmad, A., Ul, Z., Khan, H., Mahnashi, M. H., Alyami, B. A., Alqahtani, Y. S., & Ullah, S. (2020). Photodiagnosis and Photodynamic Therapy Facile and eco-benign fabrication of Ag / Fe 2 O 3 nanocomposite using Algaia Monozyga leaves extract and its ’ efficient biocidal and photocatalytic applications. Photodiagnosis and Photodynamic Therapy, 32(May), 101970. https://doi.org/10.1016/j.pdpdt.2020.101970spa
dc.relation.referencesUwaya, G. E., Fayemi, O. E., Sherif, E. M., Junaedi, H., & Ebenso, E. E. (2020). Properties of Fe 3 O 4 Nanoparticles from Callistemon viminalis Plant Extracts. 1–19spa
dc.relation.referencesVelíšková, J., Velíšek, L., & Moshé, S. L. (1996). Age-specific effects of baclofen on pentylenetetrazol-induced seizures in developing rats. Epilepsia, 37(8), 718–722. https://doi.org/10.1111/J.1528-1157.1996.TB00641.Xspa
dc.relation.referencesVelusamy, P., Kumar, G. V., Jeyanthi, V., Das, J., & Pachaiappan, R. (2016). Bio-Inspired Green Nanoparticles: Synthesis, Mechanism, and Antibacterial Application. Journal of the Korean Society of Toxicology, 32(2), 95–102. https://doi.org/10.5487/TR.2016.32.2.095spa
dc.relation.referencesVenditti, F., Angelico, R., Palazzo, G., Colafemmina, G., Ceglie, A., & Lopez, F. (2007). Preparation of nanosize silica in reverse micelles: Ethanol produced during TEOS hydrolysis affects the microemulsion structure. Langmuir, 23(20), 10063–10068. https://doi.org/10.1021/la701739wspa
dc.relation.referencesVincens, M. E. E., Cano, C. E., Bustos, M. C. C., & Oceguera, A. Y. O. (2018). El mundo de la nanotecnología situación y prospectiva para México. https://ethic.com.mx/docs/estudios/El-mundo-nanotecnologia-Situacionprospectiva-Mexico.pdfspa
dc.relation.referencesWacławek, S., Gončuková, Z., Adach, K., Fijałkowski, M., & Černík, M. (2018). Green synthesis of gold nanoparticles using Artemisia dracunculus extract: control of the shape and size by varying synthesis conditions. Environmental Science and Pollution Research 2018 25:24, 25(24), 24210–24219. https://doi.org/10.1007/S11356-018-2510-4spa
dc.relation.referencesWencewicz, T. A. (2019). Crossroads of Antibiotic Resistance and Biosynthesis. Journal of Molecular Biology, 431(18), 3370–3399. https://doi.org/10.1016/j.jmb.2019.06.033spa
dc.relation.referencesWolfram, J., Zhu, M., Yang, Y., Shen, J., Gentile, E., Paolino, D., Fresta, M., Nie, G., Chen, C., Shen, H., Ferrari, M., & Zhao, Y. (2015). Safety of nanoparticles in medicine. Current Drug Targets, 16(14), 1681. /pmc/articles/PMC4964712spa
dc.relation.referencesWu, M. L., Chen, D. H., & Huang, T. C. (2001). Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir, 17(13), 3877–3883. https://doi.org/10.1021/la010060yspa
dc.relation.referencesWu, M., & Lai, L. (2004). Synthesis of Pt / Ag bimetallic nanoparticles in water-in-oil microemulsions. 244, 149–157. https://doi.org/10.1016/j.colsurfa.2004.06.027spa
dc.relation.referencesXin Lee, K., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N. B., Bt Mohamad, S. E., & Yew, Y. P. (2016). Green Synthesis of Gold Nanoparticles Using Aqueous Extract of Garcinia mangostana Fruit Peels. Journal of Nanomaterials, 2016. https://doi.org/10.1155/2016/8489094spa
dc.relation.referencesXinxin, F., Jingxuan, C., Xiang, Z., Wen Di, L., Haixiong, G., & Yong, H. (2018). Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Advanced Drug Delivery Reviews, 132, 169–187. https://doi.org/10.1016/j.addr.2018.07.006spa
dc.relation.referencesYan, L. P., Gopinath, S. C. B., Anbu, P., Kasim, F. H., Zulhaimi, H. I., Radi, A., & Yaakub, W. (2020). Characterization and anti-bacterial potential of iron oxide nanoparticle processed eco-friendly by plant extract. Preparative Biochemistry & Biotechnology, 0(0), 1–10. https://doi.org/10.1080/10826068.2020.1783678spa
dc.relation.referencesYi, Y., Tu, G., Tsang, P. E., Xiao, S., & Fang, Z. (2019). Green synthesis of iron-based nanoparticles from extracts of Nephrolepis auriculata and applications for Cr(VI) removal. Materials Letters, 234, 388–391. https://doi.org/10.1016/j.matlet.2018.09.137spa
dc.relation.referencesYin, L., & Zhong, Z. (2020). Nanoparticles. Biomaterials Science, Cmc, 453–483. https://doi.org/10.1016/b978-0-12-816137-1.00031-3spa
dc.relation.referencesYugandhar, P., & Savithramma, N. (2015). Leaf assisted green synthesis of silver nanoparticles from Syzygium Alternifolium (Wt.) walp. characterization and antimicrobial studies. Nano Biomedicine and Engineering, 7(2), 29–37. https://doi.org/10.5101/NBE.V7I2.P29-37spa
dc.relation.referencesZamhuri, A., Lim, G. P., Ma, N. L., Tee, K. S., & Soon, C. F. (2021). MXene in the lens of biomedical engineering : synthesis , applications and future outlook. BioMedical Engineering OnLine, 1–24. https://doi.org/10.1186/s12938-021-00873-9spa
dc.relation.referencesZhang, H., Li, H., Li, D., & Meng, S. (2006). Synthesis and characterization of ultrafine CeF3 nanoparticles modified by catanionic surfactant via a reverse micelles route. Journal of Colloid and Interface Science, 302(2), 509–515. https://doi.org/10.1016/j.jcis.2006.06.062spa
dc.relation.referencesZhang, Y., Zhao, Q., & Chen, B. (2021). Reduction and removal of Cr(VI) in water using biosynthesized palladium nanoparticles loaded Shewanella oneidensis MR-1. The Science of the Total Environment, 805(2021), 1–150336. https://doi.org/10.1016/J.SCITOTENV.2021.150336spa
dc.relation.referencesZhao, Y., Zhang, J., Wang, Q., Li, W., Li, J., Han, B., Wu, Z., Zhang, K., & Li, Z. (2010). Cylindrical-to-spherical shape transformation of lecithin reverse micelles induced by CO2. Langmuir, 26(7), 4581–4585. https://doi.org/10.1021/la904917nspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subjectNanopartículasspa
dc.subjectSíntesis verdespa
dc.subjectMicela inversaspa
dc.subjectTamañospa
dc.subjectformaspa
dc.subjectActividad antimicrobianaspa
dc.subject.lembNanoparticulasspa
dc.subject.lembNanotecnologíaspa
dc.subject.lembAnnona Muricata L.spa
dc.subject.subjectenglishNanoparticlesspa
dc.subject.subjectenglishGreen synthesisspa
dc.subject.subjectenglishReverse micellespa
dc.subject.subjectenglishSizespa
dc.subject.subjectenglishShapespa
dc.subject.subjectenglishAntimicrobial activityspa
dc.titleEvaluación de la actividad antimicrobiana de nanopartículas de Hierro (FeNPs) sintetizadas con el extracto de Annona Muricata L. controladas mediante micela inversaspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.localTesis de Maestríaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
MUÑOZ FONTALVO.pdf
Tamaño:
3.86 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: