Factores críticos en la sobrivencia a la liofilización en limosilactobacillus sp: Revisión documental

dc.contributor.advisorGutiérrez Castañeda, Clara Gilma
dc.contributor.authorCaro Martínez, Stephanie Sofía
dc.coverage.spatialBarranquillaspa
dc.creator.emailstephanies-carom@unilibre.edu.cospa
dc.date.accessioned2025-06-24T21:42:31Z
dc.date.available2025-06-24T21:42:31Z
dc.date.created2025
dc.description.abstractLimosilactobacillus fermentum es un microorganismo probiótico con potencial uso en alimentación animal, el suministro de microorganismos de forma segura para la alimentación animal requiere de estudios de bioprospección microbiana, en donde una etapa clave comprende el secado para la comercialización del microorganismo, este estudio centró su objetivo en reconocer los factores claves para la liofilización de esta bacteria a través de revisión bibliográfica, en fuentes bibliográficas como Scopus, Science Direct y Pubmed, de esta revisión se encontraron un total de 81 artículos Se identificaron los factores críticos que influyen en el éxito de la viabilidad microbiana, entre estos la temperatura d congelación, el tiempo de sublimación, el usado crioprotectores, las presiones y la cepa usada, Como conclusión la optimización de la técnica depende de muchos factores del propio proceso e incluso antes de aplicarlo como el uso de marcadores biológico, y posterior, como el almacenamiento de los liofilizados, sin embargo al ser estudio de revisión no se aplican los resultados para corroborar lo encontrado pero da paso para futuras investigaciones y aplicación en protocolos.spa
dc.description.abstractenglishLimosilactobacillus fermentum is a probiotic microorganism with potential use in animal feed, the supply of microorganisms safely for animal feed requires microbial bioprospecting studies, where a key stage involves drying for the commercialization of the microorganism, this study focused its objective in recognizing the key factors for the freeze drying of this bacterium through literature review, in bibliographic sources such as Scopus, Science Direct and Pubmed, A total of 81 articles were found from this review. products:factors that influence the success of microbial viability were identified, including freezing temperature, sublimation time, the use of cryoprotectants, pressures and the strain used, As a conclusion, the optimization of the technique depends on many factors of the process itself and even before applying it, such as the use of biological markers, and later, such as the storage of the lyophilized products; however, since it is a review study, the results are not applied to corroborate what was found, but it gives way for future research and application in protocols.spa
dc.description.sponsorshipUniversidad Libre Seccional Barranquilla -- Facultad de Ciencias de la Salud, Exactas y Naturales -- Programa de Microbiologíaspa
dc.formatPDFspa
dc.identifier.urihttps://hdl.handle.net/10901/31391
dc.relation.referencesADITHI, G., DIVYASHREE, S., SHRUTHI, B., DEEPA, N., & SREENIVASA, M. Y. (2024). EVALUATION OF LIMOSILACTOBACILLUS FERMENTUM MYSAGAM1 ISOLATED FROM HERBAL AMLA JUICE AS A PROBIOTIC CANDIDATE WITH ANTIFUNGAL CHARACTERISTICS AGAINST FUSARIUM EQUISETI. FOOD BIOSCIENCE (PRINT), 103843. HTTPS://DOI.ORG/10.1016/J.FBIO.2024.103843spa
dc.relation.referencesADOLFO, P. H. R. (2010). REVIEW. BACTERIAS ACIDO LÁCTICAS: PAPEL FUNCIONAL EN LOS ALIMENTOS.HTTP://WWW.SCIELO.ORG.CO/SCIELO.PHP?SCRIPT=SCI_ARTTEXT&PID=S1692-35612010000100012spa
dc.relation.referencesALFONSO, E., & EA, C. (2006). BACTERIAS ÁCIDO-LÁCTICAS (BAL): APLICACIONES COMO CULTIVOS ESTÁRTER PARA LA INDUSTRIA LÁCTEA Y CÁRNICA. RESEARCHGATE. HTTPS://DOI.ORG/10.13140/2.1.2241.2169spa
dc.relation.referencesALVA, D. H. G., GUZMAN, M. J. M., ANDRÉS, M., & DURAN, S. (2021). USO DE PROBIÓTICOS EN LA NUTRICIÓN DE BOVINOSspa
dc.relation.referencesALVES, B. /. O. /. O.-. M. (N.D.). DECS. HTTPS://DECS.BVSALUD.ORG/ES/THS/RESOURCE/?ID=2498#CONCEPTSspa
dc.relation.referencesBAZÁN, J. V., & VARGAS, C. T. (2019). AISLAMIENTO DE LACTOBACILLUS NATIVOS DE PRODUCTOS DE FERMENTACIÓN EN LA CIUDAD DE TACNA. CIENCIA Y DESARROLLO, 11, 61–66. HTTPS://DOI.ORG/10.33326/26176033.2007.11.226spa
dc.relation.referencesBOUCHIBANE, M., CHERIGUENE, A., FADELA, C., BOUOUDINA, M., KACED, A., DAHOU, A., BENBOUZIANE, B., & SAADA, D. A. (2023). TECHNOLOGICAL AND GENOTYPIC CHARACTERISTICS OF LACTIC ACID BACTERIA ISOLATED FROM ALGERIAN ARTISANAL DAIRY PRODUCTS. INTERNATIONAL DAIRY JOURNAL, 146, 105747. HTTPS://DOI.ORG/10.1016/J.IDAIRYJ.2023.105747spa
dc.relation.referencesBRANDT, K., NETHERY, M. A., O’FLAHERTY, S., & BARRANGOU, R. (2020). GENOMIC CHARACTERIZATION OF LACTOBACILLUS FERMENTUM DSM 20052. BMC GENOMICS, 21(1). HTTPS://DOI.ORG/10.1186/S12864-020-6740-8spa
dc.relation.referencesBUTORAC, K., NOVAK, J., BELLICH, B., TERÁN, L. C., BANIĆ, M., PAVUNC, A. L., ZJALIĆ, S., CESCUTTI, P., ŠUŠKOVIĆ, J., & KOS, B. (2021). LYOPHILIZED ALGINATE-BASED MICROSPHERES CONTAINING LACTOBACILLUS FERMENTUM D12, AN EXOPOLYSACCHARIDES PRODUCER, CONTRIBUTE TO THE STRAIN’S FUNCTIONALITY IN VITRO. MICROBIAL CELL FACTORIES, 20(1). HTTPS://DOI.ORG/10.1186/S12934-021-01575-6spa
dc.relation.referencesCAVALCANTI, R. F. P., GADELHA, F. A. A. F., FERREIRA, L. K. D. P., FERREIRA, L. A. M. P., JÚNIOR, J. V. C., DE ARAÚJO BATISTA, R. S., MELO, T. B. L., DE SOUZA, F. S., ALVES, A. F., BATISTA, L. M., & PIUVEZAM, M. R. (2023). LIMOSILACTOBACILLUS FERMENTUM MODULATES THE GUT-AIRWAY AXIS BY IMPROVING THE IMMUNE RESPONSE THROUGH FOXP3 ACTIVATION ON COMBINED ALLERGIC RHINITIS AND ASTHMA SYNDROME (CARAS). IMMUNOBIOLOGY (1979), 228(5), 152721. HTTPS://DOI.ORG/10.1016/J.IMBIO.2023.152721spa
dc.relation.referencesCHENG, Z., HE, X., WU, Z., & WENG, P. (2022). IMPROVING THE VIABILITY OF POWDERED LACTOBACILLUS FERMENTUM LF01 WITH COMPLEX LYOPROTECTANTS BY MAINTAINING CELL MEMBRANE INTEGRITY AND REGULATING RELATED GENES. JOURNAL OF FOOD BIOCHEMISTRY, 46(8). HTTPS://DOI.ORG/10.1111/JFBC.14181spa
dc.relation.referencesCHENG, Z., XU, Y., WU, J., WENG, P., & WU, J. (2022). EFFECTS OF FREEZE DRYING IN COMPLEX LYOPROTECTANTS ON THE SURVIVAL, AND MEMBRANE FATTY ACID COMPOSITION OF LACTOBACILLUS PLANTARUM L1 AND LACTOBACILLUS FERMENTUM L2. CRYOBIOLOGY, 105, 1–9. HTTPS://DOI.ORG/10.1016/J.CRYOBIOL.2022.01.003spa
dc.relation.referencesCHOI, I. S., KO, S. H., KIM, H. M., YANG, J. E., JEONG, S.-G., CHANG, J. Y., LEE, K. H., QI, S.-B., XIN, Q., CUI, C.-B., MOON, J.-H., PARK, H. W. (2020). COFFEE RESIDUE AS A VALORIZATION BIO-AGENT FOR SHELF-LIFE EXTENSION OF LACTIC ACID BACTERIA UNDER CRYOPRESERVATION. WASTE MANAGEMENT (NEW YORK, N.Y.), 118, (585–590). HTTPS://DOI.ORG/10.1016/J.WASMAN.2020.09.025spa
dc.relation.referencesD’AMBROSIO, S., VENTRONE, M., FUSCO, A., CASILLO, A., DABOUS, A., CAMMAROTA, M., CORSARO, M. M., DONNARUMMA, G., SCHIRALDI, C., & CIMINI, D. (2022). LIMOSILACTOBACILLUS FERMENTUM FROM BUFFALO MILK IS SUITABLE FOR POTENTIAL BIOTECHNOLOGICAL PROCESS DEVELOPMENT AND INHIBITS HELICOBACTER PYLORI IN A GASTRIC EPITHELIAL CELL MODEL. BIOTECHNOLOGY REPORTS, 34, E00732. HTTPS://DOI.ORG/10.1016/J.BTRE.2022.E00732spa
dc.relation.referencesDABOUS, A., D’AMBROSIO, S., CIMINI, D., & SCHIRALDI, C. (2023). NOVEL HYDROXYECTOINES BASED FORMULATIONS ARE SUITABLE FOR PRESERVING VIABILITY OF LIMOSILACTOBACILLUS FERMENTUM, LEVILACTOBACILLUS BREVIS SP-48 AND BIFIDOBACTERIUM LACTIS HN019 DURING FREEZE-DRYING AND STORAGE, AND IN SIMULATED GASTROINTESTINAL FLUIDS. DRYING TECHNOLOGY, 41(12), 2062–2073. HTTPS://DOI.ORG/10.1080/07373937.2023.2217242spa
dc.relation.referencesDE INVESTIGACIONES AGROPECUARIAS CENTRO REGIONAL DE INVESTIGACIÓN QUILAMAPU, I. (2020). CONFORMACIÓN DE COLECCIONES DE CULTIVOS MICROBIANOS. HTTPS://BIBLIOTECA.INIA.CL/HANDLE/20.500.14001/6945spa
dc.relation.referencesFIOCCO, D., COLLINS, M., MUSCARIELLO, L., HOLS, P., KLEEREBEZEM, M., MSADEK, T., & SPANO, G. (2009). THE LACTOBACILLUS PLANTARUM FTSH GENE IS A NOVEL MEMBER OF THE CTSR STRESS RESPONSE REGULON. JOURNAL OF BACTERIOLOGY, 191(5), 1688-1694.spa
dc.relation.referencesFIOCCO, D., CAPOZZI, V., COLLINS, M., GALLONE, A., HOLS, P., GUZZO, J., WEIDMANN, S., RIEU, A., MSADEK, T., & SPANO, G. (2010). CHARACTERIZATION OF THE CTSR STRESS RESPONSE REGULON IN LACTOBACILLUS PLANTARUM. JOURNAL OF BACTERIOLOGY, 192(3), 896–900. HTTPS://DOI.ORG/10.1128/JB.01122-09spa
dc.relation.referencesGAO, T., LU, L., WU, Q., & WANG, C. (2023). COMPLETE GENOME SEQUENCE OF LACTOBACILLUS FERMENTUM 9-4, A PURINE-DEGRADING LACTOBACILLUS PROBIOTIC ISOLATED FROM CHINESE FERMENTED RICE-FLOUR NOODLES. JOURNAL OF FUTURE FOODS, 3(2), 169–174. HTTPS://DOI.ORG/10.1016/J.JFUTFO.2022.12.008spa
dc.relation.referencesGAWANDE, K., KOLHEKAR, M., KUMARI, M., KAPILA, S., SHARMA, P., ALI, S. A., & BEHARE, P. (2021). LACTIC ACID BACTERIA BASED PURIFIED EXOPOLYSACCHARIDE SHOWED VISCOFYING AND HYPERCHOLESTEROLEMIC CAPABILITES. FOOD HYDROCOLLOIDS FOR HEALTH, 1, 100042. HTTPS://DOI.ORG/10.1016/J.FHFH.2021.100042spa
dc.relation.referencesGE, S., HAN, J., SUN, Q., ZHOU, Q., YE, Z., LI, P., & GU, Q. (2024). RESEARCH PROGRESS ON IMPROVING THE FREEZE-DRYING RESISTANCE OF PROBIOTICS: A REVIEW. TRENDS IN FOOD SCIENCE & TECHNOLOGY, 104425.spa
dc.relation.referencesGORBEÑA, J. C. R., & SÁENZ, T. A. (2008). BACTERIAS ÁCIDO LÁCTICAS: BIOPRESERVANTE DE LOS ALIMENTOS. BIOTEMPO, 8, 54-64spa
dc.relation.referencesJIANG, X., SHEKARFOROUSH, E., MUHAMMED, M. K., WHITEHEAD, K., SIMONSEN, A. C., ARNEBORG, N., & RISBO, J. (2021). EFFICIENT CHEMICAL HYDROPHOBIZATION OF LACTIC ACID BACTERIA - ONE-STEP FORMATION OF DOUBLE EMULSION. FOOD RESEARCH INTERNATIONAL (OTTAWA, ONT.), 147(110460), 110460. HTTPS://DOI.ORG/10.1016/J.FOODRES.2021.110460spa
dc.relation.referencesKIM, W. S., PERL, L., PARK, J. H., TANDIANUS, J. E., & DUNN, N. W. (2001). ASSESSMENT OF STRESS RESPONSE OF THE PROBIOTIC LACTOBACILLUS ACIDOPHILUS. CURRENT MICROBIOLOGY, 43, 346-350.spa
dc.relation.referencesKURATSU, M., HAMANO, Y., & DAIRI, T. (2010). ANALYSIS OF THE LACTOBACILLUS METABOLIC PATHWAY. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 76(21), 7299–7301. HTTPS://DOI.ORG/10.1128/AEM.01514-10spa
dc.relation.referencesLANDO, V., VALDUGA, N. Z., & MORONI, L. S. (2023). FUNCTIONAL CHARACTERIZATION OF LACTOBACILLI STRAINS WITH ANTIMICROBIAL ACTIVITY AGAINST SALMONELLA SPP. AND CELL VIABILITY IN FERMENTED DAIRY PRODUCT. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 47, 102605. HTTPS://DOI.ORG/10.1016/J.BCAB.2023.102605spa
dc.relation.referencesLIU, D., ZHAO, F., LIU, L., ZHANG, J., WU, S., LÜ, X., ZHANG, H., & YI, Y. (2023). ENHANCING THE ANTIOXIDANT CAPACITY AND QUALITY ATTRIBUTES OF FERMENTED GOAT MILK THROUGH SYNERGISTIC ACTION OF LIMOSILACTOBACILLUS FERMENTUM WXZ 2-1 WITH STARTER CULTURE. JOURNAL OF DAIRY SCIENCE. HTTPS://DOI.ORG/10.3168/JDS.2023-24135spa
dc.relation.referencesMATEOS LARDIÉS, A. M., & ÁLVAREZ CALATAYUD, G. (2018). GUÍA DE ACTUACIÓN Y DOCUMENTO DE CONSENSO SOBRE EL MANEJO DE PREPARADOS CON PROBIÓTICOS Y/O PREBIÓTICOS EN LA FARMACIA COMUNITARIA SEFAC Y SEPYP [CONJUNTO DE DATOS]. EN SEFAC. HTTPS://WWW.SEFAC.ORG/SITES/DEFAULT/FILES/2018-07/GUIA_PROBIOTICOS%20WEB.PDFspa
dc.relation.referencesMIKELSAAR, M., & ZILMER, M. (2009). LACTOBACILLUS FERMENTUMME-3 – AN ANTIMICROBIAL AND ANTIOXIDATIVE PROBIOTIC. MICROBIAL ECOLOGY IN HEALTH AND DISEASE, 21(1), 1–27. HTTPS://DOI.ORG/10.1080/08910600902815561spa
dc.relation.referencesMOLINA-TIJERAS, J. A., DIEZ-ECHAVE, P., VEZZA, T., HIDALGO-GARCÍA, L., RUIZ-MALAGÓN, A. J., RODRÍGUEZ-SOJO, M. J., ROMERO, M., ROBLES-VERA, I., GARCÍA, F., PLAZA‐DÍAZ, J., OLIVARES, M., DUARTE, J., RODRÍGUEZ-CABEZAS, M. E., RODRÍGUEZ-NOGALES, A., & GÁLVEZ, J. (2021). LACTOBACILLUS FERMENTUM CECT5716 AMELIORATES HIGH FAT DIET-INDUCED OBESITY IN MICE THROUGH MODULATION OF GUT MICROBIOTA DYSBIOSIS. PHARMACOLOGICAL RESEARCH, 167, 105471. HTTPS://DOI.ORG/10.1016/J.PHRS.2021.105471spa
dc.relation.referencesMOLINA, A. (2019). PROBIOTICS AND THEIR MECHANISM OF ACTION IN ANIMAL FEED. AGRONOMÍA MESOAMERICANA, 30(2), 601-611spa
dc.relation.referencesMOZZI, F., RAYA, R. R., VIGNOLO, G. M., & LOVE, J. C. (2015). BIOTECHNOLOGY OF LACTIC ACID BACTERIA: NOVEL APPLICATIONS. 2. SINGAPORE: WILEY-BLACKWELLspa
dc.relation.referencesNAGHMOUCHI, K., BELGUESMIA, Y., BENDALI, F., SPANO, G., SEAL, B. S., & DRIDER, D. (2019). LACTOBACILLUS FERMENTUM: A BACTERIAL SPECIES WITH POTENTIAL FOR FOOD PRESERVATION AND BIOMEDICAL APPLICATIONS. CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 60(20), 3387–3399. HTTPS://DOI.ORG/10.1080/10408398.2019.1688250spa
dc.relation.referencesPATIL, A., MUNOT, N., PATWEKAR, M., PATWEKAR, F., AHMAD, I., ALRAEY, Y., ALGHAMDI, S., KABRAH, A., DABLOOL, A. S., & ISLAM, F. (2022). ENCAPSULATION OF LACTIC ACID BACTERIA BY LYOPHILISATION WITH ITS EFFECTS ON VIABILITY AND ADHESION PROPERTIES. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE: ECAM, 2022, 4651194. HTTPS://DOI.ORG/10.1155/2022/4651194spa
dc.relation.referencesRAMÍREZ‐LÓPEZ, C., & VÉLEZ‐RUIZ, J. F. (2016). AISLAMIENTO, CARACTERIZACIÓN Y SELECCIÓN DE BACTERIAS LÁCTICAS AUTÓCTONAS DE LECHE Y QUESO FRESCO ARTESANAL DE CABRA. INFORMACIÓN TECNOLÓGICA, 27(6), 115–128. HTTPS://DOI.ORG/10.4067/S0718-07642016000600012spa
dc.relation.referencesREGUERO, M. T., ÁVILA-PORTILLO, L. M., MADERO, J. I., LÓPEZ, C., LEÓN, M. F., ACOSTA, L., GÓMEZ, C., DELGADO, L. G., GÓMEZ, C., & LOZANO, J. M. (2006). FUNDAMENTOS DE CRIOPRESERVACIÓN. REDALYC.ORG. HTTPS://WWW.REDALYC.ORG/ARTICULO.OA?ID=195214318008spa
dc.relation.referencesREINHEIMER, J. A. (2020). EXOPOLISACÁRIDOS (EPS) DE LACTOBACILLUS FERMENTUM: NUEVOS INGREDIENTES ALIMENTARIOS CON DOBLE ROL TECNOLÓGICO Y FUNCIONAL PARA PRODUCTOS LÁCTEOS. HTTPS://RI.CONICET.GOV.AR/HANDLE/11336/138888spa
dc.relation.referencesROSSI, F., ZOTTA, T., IACUMIN, L., & REALE, A. (2016). THEORETICAL INSIGHT INTO THE HEAT SHOCK RESPONSE (HSR) REGULATION IN LACTOBACILLUS CASEI AND L. RHAMNOSUS. JOURNAL OF THEORETICAL BIOLOGY, 402, 21-37.spa
dc.relation.referencesSAMPAIO, K. B., ALVES, J. L., NASCIMENTO, Y. M. D., TAVARES, J. F., DA SILVA, M. S., NASCIMENTO, D. D. S., LIMA, M. D. S., DE ARAÚJO RODRIGUES, N. P., GARCIA, E. F., & DE SOUZA, E. L. (2022). NUTRACEUTICAL FORMULATIONS COMBINING LIMOSILACTOBACILLUS FERMENTUM, QUERCETIN, AND OR RESVERATROL WITH BENEFICIAL IMPACTS ON THE ABUNDANCE OF INTESTINAL BACTERIAL POPULATIONS, METABOLITE PRODUCTION, AND ANTIOXIDANT CAPACITY DURING COLONIC FERMENTATION. FOOD RESEARCH INTERNATIONAL, 161, 111800. HTTPS://DOI.ORG/10.1016/J.FOODRES.2022.111800spa
dc.relation.referencesSERNA, D. Y. C., BARANDICA, L. A. R., CASTAÑEDA, L. P. T., SABOGAL, H. R. J., ALMARIO, C. G., ESTRADA-BONILLA, G. A., BUITRAGO, R. R. B., CAMPOS, P. J. C., MONCADA, U. A. P., URIBE-GUTIÉRREZ, L. A., RIAÑO, J. L. G., GÓMEZ, C. V. A., VILLAMIZAR, F. R., LEÓN, R. F. H., MÁSMELA, J. C. O., RUTE, L. M. B., IBÁÑEZ, M. C. R., DEL CARMEN JIMÉNEZ VELÁSQUEZ, S., HIGUERA, L. D. T., . . . ARDILA, D. E. L. (2021). CONSERVACIÓN Y MANEJO DE LA DIVERSIDAD MICROBIANA EN LOS BANCOS DE GERMOPLASMA PARA LA ALIMENTACIÓN Y LA AGRICULTURA EN COLOMBIA. IN CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA (AGROSAVIA) EBOOKS. HTTPS://DOI.ORG/10.21930/AGROSAVIA.ANALISIS.7404845spa
dc.relation.referencesSMEDS, A., VARMANEN, P., & PALVA, A. (1998). MOLECULAR CHARACTERIZATION OF A STRESS-INDUCIBLE GENE FROM LACTOBACILLUS HELVETICUS. JOURNAL OF BACTERIOLOGY, 180(23), 6148–6153.spa
dc.relation.referencesTARANNUM, N., ALI, F., KHAN, M. S., ALHUMAIDAN, O. S., ZAWAD, A. S., & HOSSAIN, T. J. (2024). BIOACTIVE EXOPOLYSACCHARIDE FROM LIMOSILACTOBACILLUS FERMENTUM LAB-1: ANTIOXIDANT, ANTI-INFLAMMATORY, ANTIBACTERIAL AND ANTIBIOFILM PROPERTIES. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE, 100409. HTTPS://DOI.ORG/10.1016/J.BCDF.2024.100409spa
dc.relation.referencesWEI, B., PENG, Z., XIAO, M., HUANG, T., ZHENG, W., XIE, M., & XIONG, T. (2023). LIMOSILACTOBACILLUS FERMENTUM NCU003089 AND LACTIPLANTIBACILLUS PLANTARUM NCU001261, TWO PROBIOTICS WITH INHIBITION OF ESCHERICHIA COLI AND CRONOBACTER SAKAZAKII TRANSLOCATION IN VITRO. MICROBIAL PATHOGENESIS, 181, 106216. HTTPS://DOI.ORG/10.1016/J.MICPATH.2023.106216spa
dc.relation.referencesWEI, B., PENG, Z., XIAO, M., HUANG, T., ZHENG, W., XIE, M., & XIONG, T. (2022). THREE LACTIC ACID BACTERIA WITH ANTI-OBESITY PROPERTIES: IN VITRO SCREENING AND PROBIOTIC ASSESSMENT. FOOD BIOSCIENCE, 47, 101724. HTTPS://DOI.ORG/10.1016/J.FBIO.2022.101724spa
dc.relation.referencesZHAO, S., FENG, P., HU, X., CAO, W., LIU, P., HAN, H., JIN, W., & LI, X. (2022). PROBIOTIC LIMOSILACTOBACILLUS FERMENTUM GR-3 AMELIORATES HUMAN HYPERURICEMIA VIA DEGRADING AND PROMOTING EXCRETION OF URIC ACID. ISCIENCE, 25(10), 105198. HTTPS://DOI.ORG/10.1016/J.ISCI.2022.105198spa
dc.relation.referencesZHAO, X., PENG, F., LIU, Z., PENG, Z., GUAN, Q., CAI, P., XIONG, S., YU, Q., XIE, M., & XIONG, T. (2023). LACTIC ACID BACTERIA WITH ANTI-HYPERURICEMIA ABILITY: SCREENING IN VITRO AND EVALUATING IN MICE. FOOD BIOSCIENCE, 52, 102411. https://doi.org/10.1016/j.fbio.2023.102411spa
dc.relation.referencesARAGÓN-ROJAS, S., RUIZ-PARDO, R. Y., HERNÁNDEZ-ÁLVAREZ, A. J., & QUINTANILLA-CARVAJAL, M. X. (2019). SUBLIMATION CONDITIONS AS CRITICAL FACTORS DURING FREEZE-DRIED PROBIOTIC POWDER PRODUCTION. DRYING TECHNOLOGY, 38(3), 333–349. https://doi.org/10.1080/07373937.2019.1570248spa
dc.relation.referencesCUI, S., HU, M., SUN, Y., MAO, B., ZHANG, Q., ZHAO, J., TANG, X., & ZHANG, H. (2022). EFFECT OF TREHALOSE AND LACTOSE TREATMENTS ON THE FREEZE-DRYING RESISTANCE OF LACTIC ACID BACTERIA IN HIGH-DENSITY CULTURE. MICROORGANISMS, 11(1), 48. https://doi.org/10.3390/microorganisms11010048spa
dc.relation.referencesPATIL, A., MUNOT, N., PATWEKAR, M., PATWEKAR, F., AHMAD, I., ALRAEY, Y., ALGHAMDI, S., KABRAH, A., DABLOOL, A. S., & ISLAM, F. (2022). ENCAPSULATION OF LACTIC ACID BACTERIA BY LYOPHILISATION WITH ITS EFFECTS ON VIABILITY AND ADHESION PROPERTIES. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 1–9. https://doi.org/10.1155/2022/4651192spa
dc.relation.referencesSTEFANELLO, R. F., NABESHIMA, E. H., IAMANAKA, B. T., LUDWIG, A., FRIES, L. L. M., BERNARDI, A. O., & COPETTI, M. V. (2019). SURVIVAL AND STABILITY OF LACTOBACILLUS FERMENTUM AND WICKERHAMOMYCES ANOMALUS STRAINS UPON LYOPHILISATION WITH DIFFERENT CRYOPROTECTANT AGENTS. FOOD RESEARCH INTERNATIONAL, 115, 90–94. https://doi.org/10.1016/j.foodres.2018.07.044spa
dc.relation.referencesCHENG, Z., YAN, X., WU, J., WENG, P., & WU, Z. (2022). EFFECTS OF FREEZE DRYING IN COMPLEX LYOPROTECTANTS ON THE SURVIVAL, AND MEMBRANE FATTY ACID COMPOSITION OF LACTOBACILLUS PLANTARUM L1 AND LACTOBACILLUS FERMENTUM L2. CRYOBIOLOGY, 105, 1–9. https://doi.org/10.1016/j.cryobiol.2022.01.004spa
dc.relation.referencesCHEN, M., & MUSTAPHA, A. (2011). SURVIVAL OF FREEZE-DRIED MICROCAPSULES OF Α-GALACTOSIDASE PRODUCING PROBIOTICS IN A SOY BAR MATRIX. FOOD MICROBIOLOGY, 30(1), 68–73. https://doi.org/10.1016/j.fm.2011.10.017spa
dc.relation.referencesAMPATZOGLOU, A., SCHURR, B., DEEPIKA, G., BAIPONG, S., & CHARALAMPOPOULOS, D. (2010). INFLUENCE OF FERMENTATION ON THE ACID TOLERANCE AND FREEZE-DRYING SURVIVAL OF LACTOBACILLUS RHAMNOSUS GG. BIOCHEMICAL ENGINEERING JOURNAL, 52(1), 65–70. https://doi.org/10.1016/j.bej.2010.07.005spa
dc.relation.referencesHEIDEBACH, T., FÖRST, P., & KULOZIK, U. (2010). INFLUENCE OF CASEIN-BASED MICROENCAPSULATION ON FREEZE-DRYING AND STORAGE OF PROBIOTIC CELLS. JOURNAL OF FOOD ENGINEERING, 98(3), 309–316. https://doi.org/10.1016/j.jfoodeng.2010.01.003spa
dc.relation.referencesRATHNAYAKA, R. M. U. S. K. (2013). EFFECT OF FREEZE-DRYING ON VIABILITY AND PROBIOTIC PROPERTIES OF A MIXTURE OF PROBIOTIC BACTERIA. ARPN J. SCI. TECHNOL, 3, 1074-1078spa
dc.relation.referencesCHOTIKO, A., & SATHIVEL, S. (2014). EFFECTS OF ENZYMATICALLY EXTRACTED PURPLE RICE BRAN FIBER AS A PROTECTANT OF L. PLANTARUM NRRL B-4496 DURING FREEZING, FREEZE DRYING, AND STORAGE. LWT, 59(1), 59–64. https://doi.org/10.1016/j.lwt.2014.05.056spa
dc.relation.referencesKRASAEKOOPT, W. (2017). INFLUENCE OF NON-EQUILIBRIUM STATES AND GLASS TRANSITION ON THE SURVIVAL OF BACTERIA. IN ELSEVIER EBOOKS (PP. 405–446). https://doi.org/10.1016/b978-0-08-100309-1.00021-3spa
dc.relation.referencesMIAO, S., MILLS, S., STANTON, C., FITZGERALD, G. F., ROOS, Y., & ROSS, R. P. (2008). EFFECT OF DISACCHARIDES ON SURVIVAL DURING STORAGE OF FREEZE-DRIED PROBIOTICS. DAIRY SCIENCE AND TECHNOLOGY, 88(1), 19–30. https://doi.org/10.1051/dst:2007003spa
dc.relation.referencesTANG, H. W., ABBASILIASI, S., MURUGAN, P., TAM, Y. J., NG, H. S., & TAN, J. S. (2020). INFLUENCE OF FREEZE-DRYING AND SPRAY-DRYING PRESERVATION METHODS ON SURVIVABILITY RATE OF DIFFERENT TYPES OF PROTECTANTS ENCAPSULATED LACTOBACILLUS ACIDOPHILUS FTDC 3081. BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 84(9), 1913–1920. https://doi.org/10.1080/09168451.2020.1770572spa
dc.relation.referencesWANG, G., PU, J., DONG, C., ZHENG, X., GUO, B., XIA, Y., & AI, L. (2021). EFFECT OF OLEIC ACID ON THE VIABILITY OF DIFFERENT FREEZE-DRIED LACTIPLANTIBACILLUS PLANTARUM STRAINS. JOURNAL OF DAIRY SCIENCE, 104(11), 11457–11465. https://doi.org/10.3168/jds.2020-20070spa
dc.relation.referencesTYAGI, N., GIDLÖF, Z., OSANLÓO, D. T., COLLIER, E. S., KADEKAR, S., RINGSTAD, L., FUREBY, A. M., & ROOS, S. (2023). THE IMPACT OF FORMULATION AND FREEZE DRYING ON THE PROPERTIES AND PERFORMANCE OF FREEZE-DRIED LIMOSILACTOBACILLUS REUTERI R2LC. APPLIED MICROBIOLOGY, 3(4), 1370–1387. https://doi.org/10.3390/applmicrobiol3040092spa
dc.relation.referencesBOVE, P., CAPOZZI, V., GAROFALO, C., RIEU, A., SPANO, G., & FIOCCO, D. (2011). INACTIVATION OF THE FTSH GENE OF LACTOBACILLUS PLANTARUM WCFS1: EFFECTS ON GROWTH, STRESS TOLERANCE, CELL SURFACE PROPERTIES AND BIOFILM FORMATION. MICROBIOLOGICAL RESEARCH, 167(4), 187–193. https://doi.org/10.1016/j.micres.2011.07.001spa
dc.relation.referencesLANGKLOTZ, S., BAUMANN, U., & NARBERHAUS, F. (2011). STRUCTURE AND FUNCTION OF THE BACTERIAL AAA PROTEASE FTSH. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR CELL RESEARCH, 1823(1), 40–48. https://doi.org/10.1016/j.bbamcr.2011.08.015spa
dc.relation.referencesFIOCCO, D., COLLINS, M., MUSCARIELLO, L., HOLS, P., KLEEREBEZEM, M., MSADEK, T., & SPANO, G. (2008). THE LACTOBACILLUS PLANTARUM FTSH GENE IS A NOVEL MEMBER OF THE CTSR STRESS RESPONSE REGULON. JOURNAL OF BACTERIOLOGY, 191(5), 1688–1694. https://doi.org/10.1128/jb.01551-08spa
dc.relation.referencesFIOCCO, D., CAPOZZI, V., COLLINS, M., GALLONE, A., HOLS, P., GUZZO, J., WEIDMANN, S., RIEU, A., MSADEK, T., & SPANO, G. (2009). CHARACTERIZATION OF THE CTSR STRESS RESPONSE REGULON IN LACTOBACILLUS PLANTARUM. JOURNAL OF BACTERIOLOGY, 192(3), 896–900. https://doi.org/10.1128/jb.01122-09spa
dc.relation.referencesELSHOLZ, A. K., GERTH, U., & HECKER, M. (2010). REGULATION OF CTSR ACTIVITY IN LOW GC, GRAM+ BACTERIA. ADVANCES IN MICROBIAL PHYSIOLOGY/ADVANCES IN MICROBIAL PHYSIOLOGY, 119–144. https://doi.org/10.1016/b978-0-12-381045-8.00003-5spa
dc.relation.referencesSMEDS, A., VARMANEN, P., & PALVA, A. (1998). MOLECULAR CHARACTERIZATION OF A STRESS-INDUCIBLE GENE FROM LACTOBACILLUS HELVETICUS. JOURNAL OF BACTERIOLOGY, 180(23), 6148–6153. https://doi.org/10.1128/jb.180.23.6148-6153.1998spa
dc.relation.referencesFOUCAUD-SCHEUNEMANN, C., & POQUET, I. (2003). HTRA IS A KEY FACTOR IN THE RESPONSE TO SPECIFIC STRESS CONDITIONS INLACTOCOCCUS LACTIS. FEMS MICROBIOLOGY LETTERS, 224(1), 53–59. https://doi.org/10.1016/s0378-1097(03)00419-1spa
dc.relation.referencesTAXONOMY. (N.D.). NAVEGADOR DE TAXONOMÍA (LIMOSILACTOBACILLUS FERMENTUM). https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&id=1613&lvl=3&lin=s&keep=1&srchmode=1&unlock&log_op=lineage_togglespa
dc.relation.referencesKONG, L., HUANG, Y., ZENG, X., YE, C., WU, Z., GUO, Y., & PAN, D. (2022). EFFECTS OF GALACTOSYLTRANSFERASE ON EPS BIOSYNTHESIS AND FREEZE-DRYING RESISTANCE OF LACTOBACILLUS ACIDOPHILUS NCFM. FOOD CHEMISTRY MOLECULAR SCIENCES, 5, 100145. https://doi.org/10.1016/j.fochms.2022.100145spa
dc.relation.referencesLIU, Z., ZHAO, X., & BANGASH, H. I. (2024). EXPRESSION OF STRESS RESPONSIVE GENES ENABLES LIMOSILACTOBACILLUS REUTERI TO CROSS-PROTECTION AGAINST ACID, BILE SALT, AND FREEZE-DRYING. FRONTIERS IN MICROBIOLOGY, 15. https://doi.org/10.3389/fmicb.2024.1437803spa
dc.relation.referencesTORRES RODELO, M. D. R. (2018). EVALUACIÓN TECNOLÓGICA DEL PROCESO DE OBTENCIÓN DE BIOMASA DE MICROORGANISMOS PROBIÓTICOS EN MEDIO DE CULTIVO FORMULADO CON SUERO LÁCTEO SUPLEMENTADO (DOCTORAL DISSERTATION).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/spa
dc.subjectLiofilizaciónspa
dc.subjectLimosilactobacillus spspa
dc.subjectprobióticospa
dc.subject.lembLiofilizaciónspa
dc.subject.lembBiotecnología microbianaspa
dc.subject.lembProbióticosspa
dc.subject.subjectenglishLyophilizationspa
dc.subject.subjectenglishLimosilactobacillus spspa
dc.subject.subjectenglishprobioticspa
dc.titleFactores críticos en la sobrivencia a la liofilización en limosilactobacillus sp: Revisión documentalspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Pregradospa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
CARO.pdf
Tamaño:
627.63 KB
Formato:
Adobe Portable Document Format
Descripción:
Archivo del trabajo de grado
Cargando...
Miniatura
Nombre:
AUTORIZACION CARO.pdf
Tamaño:
1.8 MB
Formato:
Adobe Portable Document Format
Descripción:
Autorización para la publicación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones