Propiedades mecánicas de muretes fabricados con bloques de mortero de eps como material aglomerante.

dc.contributor.advisorAmariles López, Cristhian Camilo
dc.contributor.authorÁlvarez García, Luisa María
dc.contributor.authorSantander Pai, Yalí Karina
dc.coverage.spatialPereiraspa
dc.creator.emailluisam-alvarezg@unilibre.edu.cospa
dc.creator.emailluisam-alvarezg@unilibre.edu.cospa
dc.date.accessioned2024-05-27T20:52:19Z
dc.date.available2024-05-27T20:52:19Z
dc.date.created2024-05-02
dc.description.abstractEsta investigación evaluó el uso de bloques de mortero fabricados con poliestireno expandido (EPS) como aglomerante en la construcción de muretes. Se implementó una metodología que incluyó la caracterización de los materiales, la fabricación de muestras, la realización de ensayos destructivos y no destructivos, y un análisis comparativo con bloques de concreto convencionales. Los resultados demostraron que, si bien los bloques de EPS cumplieron con los requisitos de dimensiones y densidad según las normas, no lograron alcanzar la resistencia a la compresión mínima requerida para bloques estructurales y no estructurales establecida en la norma NTC 4205. No obstante, exhibieron una densidad relativamente baja en comparación con los bloques convencionales, lo que podría representar una ventaja en términos de reducción de peso. El análisis de las curvas esfuerzo-deformación reveló diferencias significativas en el comportamiento mecánico entre los distintos muretes ensayados. Los muretes M3 y M5 presentaron las mayores rigideces, indicando una mayor resistencia a la deformación, lateral, mientras que los muretes M1 y M2 mostraron las rigideces más bajas, sugiriendo una mayor susceptibilidad a la deformación lateral. Desde el punto de vista económico, el costo de producción de los bloques de EPS resultó ser significativamente mayor, con un precio unitario de $12.102,93 pesos colombianos, lo que representa un aumento del 76% en comparación con los bloques de concreto convencionales. Sin embargo, su fabricación implica un menor impacto ambiental. Si bien los bloques de EPS no cumplieron con los requisitos de resistencia estructural, su uso en la construcción sigue siendo prometedor debido a sus propiedades de aislamiento térmico y acústico, y su potencial para reducir el impacto ambiental. Se requieren futuras investigaciones y mejoras en el diseño y fabricación para incrementar su resistencia mecánica y reducir los costos de producción, aprovechando así los beneficios ambientales que ofrecen estos materiales.spa
dc.description.abstractenglishThis research evaluated the use of expanded polystyrene (EPS) mortar blocks as a binder in the construction of small walls. A methodology was implemented, which included material characterization, sample manufacturing, conducting destructive and non-destructive tests, and a comparative analysis with conventional concrete blocks. The results showed that while the EPS blocks met the dimensional and density requirements according to standards, they failed to achieve the minimum compression strength required for structural and non-structural blocks as established in the NTC 4205 standard. However, they exhibited a relatively low density compared to conventional blocks, which could represent an advantage in terms of weight reduction, Analysis of the stress-strain curves revealed significant differences in the mechanical behavior among the different tested walls. Walls M3 and M5 exhibited the highest stiffness, indicating greater resistance to lateral deformation, while walls M1 and M2 showed the lowest stiffness, suggesting higher susceptibility to lateral deformation. From an economic standpoint, the production cost of EPS blocks turned out to be significantly higher, with a unit price of $12,102.93 Colombian pesos, representing a 76% increase compared to conventional concrete blocks. However, their production entails a lower environmental impact. Although EPS blocks did not meet the requirements for structural strength, their use in construction remains promising due to their thermal and acoustic insulation properties, and their potential to reduce environmental impact. Further research and improvements in design and manufacturing are needed to increase their mechanical strength and reduce production costs, thereby harnessing the environmental benefits offered by these materials..spa
dc.description.sponsorshipUniversidad Libre Seccional Pereira -- Facultad de Ingeniería -- Ingeniería Civilspa
dc.formatPDFspa
dc.identifier.urihttps://hdl.handle.net/10901/29203
dc.relation.referencesAbdelrahman, G. E., Kawabe, S., Tsukamoto, Y., & Tatsuoka, F. (2008). Small-strain stress-strain properties of expanded polystyrene geofoam. Soils and foundations, 48(1), 61-71. https://doi.org/10.3208/sandf.48.61spa
dc.relation.referencesAwoyera, P. O., & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12, e00330. https://doi.org/10.1016/j.cscm.2020.e00330spa
dc.relation.referencesBonenberg, W., & Kapliński, O. (2018). The architect and the paradigms of sustainable development: A review of dilemmas. Sustainability (Switzerland), 10(1), 1–15. https://doi.org/10.3390/su10010100spa
dc.relation.referencesDavila, J. M., Fortes, J. C., Jaramillo-Morilla, A., de la Torre, M., & Pancho, R. (2019). Behavior of expanded polystyrene as lightweight filler in retaining walls with intermediate slabs. Latin American Journal of Solids and Structures, 16(2), 1–16. https://doi.org/10.1590/1679-78254776spa
dc.relation.referencesDing, C., Xue, K., Cui, H., Xu, Z., Yang, H., Bao, X., & Yi, G. (2023). Research on fire resistance of silica fume insulation mortar. Journal of Materials Research and Technology, 25, 1273–1288. https://doi.org/10.1016/j.jmrt.2023.06.004spa
dc.relation.referencesDobiszewska, M., Bagcal, O., Beycioğlu, A., Goulias, D., Köksal, F., Płomiński, B., & Ürünveren, H. (2023). Utilization of rock dust as cement replacement in cement composites: An alternative approach to sustainable mortar and concrete productions. Journal of Building Engineering, 69(September 2022), 106180. https://doi.org/10.1016/j.jobe.2023.106180spa
dc.relation.referencesDrozd, W., & Leśniak, A. (2018). Ecological wall systems as an element of sustainable development-cost issues. Sustainability (Switzerland), 10(7). https://doi.org/10.3390/su10072234spa
dc.relation.referencesEgodagamage, H., Yapa, H. D., Samith Buddika, H. A. D., Navaratnam, S., & Nguyen, K. (2023). Effective use of biochar as an additive for alkali-activated slag mortar production. Construction and Building Materials, 370(January), 130487. https://doi.org/10.1016/j.conbuildmat.2023.130487spa
dc.relation.referencesFeng, J., Li, Y., Wu, H., Li, X., Feng, F., & Cai, J. (2023). Seismic behavior of precast shear wall with novel bundled connections. Case Studies in Construction Materials, 18(March). https://doi.org/10.1016/j.cscm.2023.e02098spa
dc.relation.referencesGiuliani, F., Autelitano, F., Garilli, E., & Montepara, A. (2020). Expanded polystyrene (EPS) in road construction: Twenty years of Italian experiences. Transportation Research Procedia, 45(2019), 410–417. https://doi.org/10.1016/j.trpro.2020.03.033spa
dc.relation.referencesGomaa, A. E., Hasan, A. M. M., Mater, Y. M., & AbdelSalam, S. S. (2023). Shell folded footings using different angles and EPS cavity filling: experimental study. International Journal of Geo-Engineering, 14(1). https://doi.org/10.1186/s40703-023-00187-wspa
dc.relation.referencesGutierrez-Velasquez, E. I., Monteiro, S. N., & Colorado, H. A. (2022). Characterization of expanded polystyrene waste as binder and coating material. Case Studies in Construction Materials, 16(November 2021), e00804. https://doi.org/10.1016/j.cscm.2021.e00804spa
dc.relation.referencesHan, W., Pei, S., & Liu, F. (2022). Material characterization of the brick in the Ming Dynasty heritage wall of Pianguan County: A case study. Case Studies in Construction Materials, 16(November 2021), e00940. https://doi.org/10.1016/j.cscm.2022.e00940spa
dc.relation.referencesHou, L., Huang, W., & Li, X. (2019). Experimental Study on Seismic Performance of Multiple Ecological Composite Wall. IOP Conference Series: Earth and Environmental Science, 304(4), 8–12. https://doi.org/10.1088/1755-1315/304/4/042057spa
dc.relation.referencesICONTEC. (2001). Norma Técnica Colombiana NTC 4024 Prefabricados de concreto. muestreo y ensayo de prefabricados de concreto no reforzados, vibro compactadosspa
dc.relation.referencesICONTEC. (2003). norma técnica ntc colombiana 3495 Método de ensayo para determinar la resistencia a la compresión de muretes de mampostería.spa
dc.relation.referencesICONTEC. (2009a). norma técnica ntc colombiana 4205-1 unidades de mampostería de arcilla cocida. ladrillos y bloques cerámicos. parte 1: mampostería estructural.spa
dc.relation.referencesICONTEC. (2009b). norma técnica ntc colombiana 4205-2 unidades de mampostería de arcilla cocida. ladrillos y bloques cerámicos. parte 2: Mampostería no estructural.spa
dc.relation.referencesINVIAS. (2013a). Análisis granulométrico de agregados gruesos finos INV E - 213 - 13.spa
dc.relation.referencesINVIAS. (2013b). Determinación de la gravedad específica de las partículas sólidas de los suelos y de la llenante mineral, empleando un picnómetro con agua INV E - 128.spa
dc.relation.referencesINVIAS. (2013c). Equivalente de arena de suelos y agregados finos INV E 133 - 13.spa
dc.relation.referencesINVIAS. (2013d). Presencia de impurezas orgánicas en arenas usadas para la preparación de morteros y concretos.spa
dc.relation.referencesIslam, M. J., & Shahjalal, M. (2021). Effect of polypropylene plastic on concrete properties as a partial replacement of stone and brick aggregate. Case Studies in Construction Materials, 15(June), e00627. https://doi.org/10.1016/j.cscm.2021.e00627spa
dc.relation.referencesJoshua, O., Olusola, K. O., Nduka, D. O., Ede, A. N., Olofinnade, O. M., & Job, O. F. (2020). Modified mix design development specification batched by volume from specified mix design by weight towards improved concrete production. MethodsX, 7, 100817. https://doi.org/10.1016/j.mex.2020.100817spa
dc.relation.referencesKhoukhi, M., Abdelbaqi, S., Hassan, A., & Darsaleh, A. (2021). Impact of dynamic thermal conductivity change of EPS insulation on temperature variation through a wall assembly. Case Studies in Thermal Engineering, 25(February), 100917. https://doi.org/10.1016/j.csite.2021.100917spa
dc.relation.referencesKisilewicz, T., Fedorczak-Cisak, M., Sadowska, B., Ickiewicz, I., Barkanyi, T., Bomberg, M., & Gobcewicz, E. (2023). On the results of long-term winter testing of active thermal insulation. Energy and Buildings, 296(April). https://doi.org/10.1016/j.enbuild.2023.113412spa
dc.relation.referencesLeśniak, A., & Zima, K. (2018). Cost calculation of construction projects including sustainability factors using the Case Based Reasoning (CBR) method. Sustainability (Switzerland), 10(5). https://doi.org/10.3390/su10051608spa
dc.relation.referencesLi, L., Liu, K., Chen, B., & Wang, R. (2022). Effect of cyclic curing conditions on the tensile bond strength between the polymer modified mortar and the tile. Case Studies in Construction Materials, 17(September), e01531. https://doi.org/10.1016/j.cscm.2022.e01531spa
dc.relation.referencesLiu, G. ping, & Zhang, Y. (2012). Research on the adobe block of the system of new compounded adobe walls. Applied Mechanics and Materials, 193–194, 553–555. https://doi.org/10.4028/www.scientific.net/AMM.193-194.553spa
dc.relation.referencesMa, Yuetan, Zhou, H., Jiang, X., Polaczyk, P., Xiao, R., Zhang, M., & Huang, B. (2021). The utilization of waste plastics in asphalt pavements: A review. Cleaner Materials, 2(July), 100031. https://doi.org/10.1016/j.clema.2021.100031spa
dc.relation.referencesMa, Yunfeng, Xu, L., & Shi, X. (2023). The multi-factor influence of frost resistance and prevention effect of tunnel thermal insulation layer in cold areas. Alexandria Engineering Journal, 78(1), 15–25. https://doi.org/10.1016/j.aej.2023.07.028spa
dc.relation.referencesMaghfouri, M., Alimohammadi, V., Gupta, R., Saberian, M., Azarsa, P., Hashemi, M., … Roychand, R. (2022). Drying shrinkage properties of expanded polystyrene (EPS) lightweight aggregate concrete: A review. Case Studies in Construction Materials, 16(September 2021), e00919. https://doi.org/10.1016/j.cscm.2022.e00919spa
dc.relation.referencesMartínez-Barrera, G., Martínez-López, M., del Coz-Díaz, J. J., López-Gayarre, F., & Varela-Guerrero, V. (2019). Waste polymers and gamma radiation on the mechanical improvement of polymer mortars: Experimental and calculated results. Case Studies in Construction Materials, 11. https://doi.org/10.1016/j.cscm.2019.e00273spa
dc.relation.referencesParracha, J. L., Santos, A. R., Lazera, R., Flores-Colen, I., Gomes, M. G., & Rodrigues, A. M. (2023). Performance of lightweight thermal insulating mortars applied on brick substrate specimens and prototype wall. Construction and Building Materials, 364(September 2022). https://doi.org/10.1016/j.conbuildmat.2022.129954spa
dc.relation.referencesPham, T. T., Kurihashi, Y., & Masuya, H. (2022). Impact response of reinforced concrete beam with cushion using finite-element analysis. Case Studies in Construction Materials, 17(May), e01147. https://doi.org/10.1016/j.cscm.2022.e01147spa
dc.relation.referencesPosani, M., Veiga, R., & Freitas, V. (2023). Post-Insulating traditional massive walls in Southern Europe: A moderate thermal resistance can be more effective than you think. Energy and Buildings, 295(June). https://doi.org/10.1016/j.enbuild.2023.113299spa
dc.relation.referencesRen, J., & Lai, Y. (2021). Study on the durability and failure mechanism of concrete modified with nanoparticles and polypropylene fiber under freeze-thaw cycles and sulfate attack. Cold Regions Science and Technology, 188, 103301. https://doi.org/10.1016/j.coldregions.2021.103301spa
dc.relation.referencesSalih Mohammed, A., Mahmood, W., Sarwar Qadir, W., Ghafor, K., & Kurda, R. (2023). Microstructure tests, flow, and mechanical behavior of polymerized cement mortar. Ain Shams Engineering Journal, 14(4), 101922. https://doi.org/10.1016/j.asej.2022.101922spa
dc.relation.referencesSanjuan, A., Errarte, A., & Bou-Ali, M. M. (2022). Analysis of thermophoresis for separation of polystyrene microparticles in microfluidic devices. International Journal of Heat and Mass Transfer, 189, 122690. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122690spa
dc.relation.referencesSha, A., Liu, Z., Jiang, W., Qi, L., Hu, L., Jiao, W., & Barbieri, D. M. (2021). Advances and development trends in eco-friendly pavements. Journal of Road Engineering, 1(December), 1–42. https://doi.org/10.1016/j.jreng.2021.12.002spa
dc.relation.referencesŠvajlenka, J., & Kozlovská, M. (2018). Houses based on wood as an ecological and sustainable housing alternative-Case study. Sustainability (Switzerland), 10(5). https://doi.org/10.3390/su10051502spa
dc.relation.referencesWibowo, A. (2019). Cyclic behaviour of expanded polystyrene (Eps) sandwich concrete walls. IOP Conference Series: Materials Science and Engineering, 620(1). https://doi.org/10.1088/1757-899X/620/1/012060spa
dc.relation.referencesZaragoza-Benzal, A., Ferrández, D., Atanes-Sánchez, E., & Morón, C. (2023). New lightened plaster material with dissolved recycled expanded polystyrene and end-of-life tyres fibres for building prefabricated industry. Case Studies in Construction Materials, 18(October 2022). https://doi.org/10.1016/j.cscm.2023.e02178spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/spa
dc.subjectMuretesspa
dc.subjectBloques de morterospa
dc.subjectpoliestireno expandidospa
dc.subjectPropiedades macánicasspa
dc.subjectConstrucción sosteniblespa
dc.subject.subjectenglishParapet wallsspa
dc.subject.subjectenglishMortar blocksspa
dc.subject.subjectenglishExpanded polystyrenespa
dc.subject.subjectenglishMechanical propertiesspa
dc.subject.subjectenglishSustainable constructionspa
dc.titlePropiedades mecánicas de muretes fabricados con bloques de mortero de eps como material aglomerante.spa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Pregradospa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PROPIEDADES MECÁNICAS DE MURETES FABRICADOS CON BLOQUES DE MORTERO DE EPS COMO MATERIAL AGLOMERANTE ALVAREZ Y SANTANDER (1) (1).pdf
Tamaño:
827.81 KB
Formato:
Adobe Portable Document Format
Descripción:
articulo principal
Cargando...
Miniatura
Nombre:
Autoriz publicación de trabajos en formato digital(V5).pdf
Tamaño:
300.13 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: