Propiedades mecánicas de muretes fabricados con bloques de mortero de eps como material aglomerante.
| dc.contributor.advisor | Amariles López, Cristhian Camilo | |
| dc.contributor.author | Álvarez García, Luisa María | |
| dc.contributor.author | Santander Pai, Yalí Karina | |
| dc.coverage.spatial | Pereira | spa |
| dc.creator.email | luisam-alvarezg@unilibre.edu.co | spa |
| dc.creator.email | luisam-alvarezg@unilibre.edu.co | spa |
| dc.date.accessioned | 2024-05-27T20:52:19Z | |
| dc.date.available | 2024-05-27T20:52:19Z | |
| dc.date.created | 2024-05-02 | |
| dc.description.abstract | Esta investigación evaluó el uso de bloques de mortero fabricados con poliestireno expandido (EPS) como aglomerante en la construcción de muretes. Se implementó una metodología que incluyó la caracterización de los materiales, la fabricación de muestras, la realización de ensayos destructivos y no destructivos, y un análisis comparativo con bloques de concreto convencionales. Los resultados demostraron que, si bien los bloques de EPS cumplieron con los requisitos de dimensiones y densidad según las normas, no lograron alcanzar la resistencia a la compresión mínima requerida para bloques estructurales y no estructurales establecida en la norma NTC 4205. No obstante, exhibieron una densidad relativamente baja en comparación con los bloques convencionales, lo que podría representar una ventaja en términos de reducción de peso. El análisis de las curvas esfuerzo-deformación reveló diferencias significativas en el comportamiento mecánico entre los distintos muretes ensayados. Los muretes M3 y M5 presentaron las mayores rigideces, indicando una mayor resistencia a la deformación, lateral, mientras que los muretes M1 y M2 mostraron las rigideces más bajas, sugiriendo una mayor susceptibilidad a la deformación lateral. Desde el punto de vista económico, el costo de producción de los bloques de EPS resultó ser significativamente mayor, con un precio unitario de $12.102,93 pesos colombianos, lo que representa un aumento del 76% en comparación con los bloques de concreto convencionales. Sin embargo, su fabricación implica un menor impacto ambiental. Si bien los bloques de EPS no cumplieron con los requisitos de resistencia estructural, su uso en la construcción sigue siendo prometedor debido a sus propiedades de aislamiento térmico y acústico, y su potencial para reducir el impacto ambiental. Se requieren futuras investigaciones y mejoras en el diseño y fabricación para incrementar su resistencia mecánica y reducir los costos de producción, aprovechando así los beneficios ambientales que ofrecen estos materiales. | spa |
| dc.description.abstractenglish | This research evaluated the use of expanded polystyrene (EPS) mortar blocks as a binder in the construction of small walls. A methodology was implemented, which included material characterization, sample manufacturing, conducting destructive and non-destructive tests, and a comparative analysis with conventional concrete blocks. The results showed that while the EPS blocks met the dimensional and density requirements according to standards, they failed to achieve the minimum compression strength required for structural and non-structural blocks as established in the NTC 4205 standard. However, they exhibited a relatively low density compared to conventional blocks, which could represent an advantage in terms of weight reduction, Analysis of the stress-strain curves revealed significant differences in the mechanical behavior among the different tested walls. Walls M3 and M5 exhibited the highest stiffness, indicating greater resistance to lateral deformation, while walls M1 and M2 showed the lowest stiffness, suggesting higher susceptibility to lateral deformation. From an economic standpoint, the production cost of EPS blocks turned out to be significantly higher, with a unit price of $12,102.93 Colombian pesos, representing a 76% increase compared to conventional concrete blocks. However, their production entails a lower environmental impact. Although EPS blocks did not meet the requirements for structural strength, their use in construction remains promising due to their thermal and acoustic insulation properties, and their potential to reduce environmental impact. Further research and improvements in design and manufacturing are needed to increase their mechanical strength and reduce production costs, thereby harnessing the environmental benefits offered by these materials.. | spa |
| dc.description.sponsorship | Universidad Libre Seccional Pereira -- Facultad de Ingeniería -- Ingeniería Civil | spa |
| dc.format | spa | |
| dc.identifier.uri | https://hdl.handle.net/10901/29203 | |
| dc.relation.references | Abdelrahman, G. E., Kawabe, S., Tsukamoto, Y., & Tatsuoka, F. (2008). Small-strain stress-strain properties of expanded polystyrene geofoam. Soils and foundations, 48(1), 61-71. https://doi.org/10.3208/sandf.48.61 | spa |
| dc.relation.references | Awoyera, P. O., & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12, e00330. https://doi.org/10.1016/j.cscm.2020.e00330 | spa |
| dc.relation.references | Bonenberg, W., & Kapliński, O. (2018). The architect and the paradigms of sustainable development: A review of dilemmas. Sustainability (Switzerland), 10(1), 1–15. https://doi.org/10.3390/su10010100 | spa |
| dc.relation.references | Davila, J. M., Fortes, J. C., Jaramillo-Morilla, A., de la Torre, M., & Pancho, R. (2019). Behavior of expanded polystyrene as lightweight filler in retaining walls with intermediate slabs. Latin American Journal of Solids and Structures, 16(2), 1–16. https://doi.org/10.1590/1679-78254776 | spa |
| dc.relation.references | Ding, C., Xue, K., Cui, H., Xu, Z., Yang, H., Bao, X., & Yi, G. (2023). Research on fire resistance of silica fume insulation mortar. Journal of Materials Research and Technology, 25, 1273–1288. https://doi.org/10.1016/j.jmrt.2023.06.004 | spa |
| dc.relation.references | Dobiszewska, M., Bagcal, O., Beycioğlu, A., Goulias, D., Köksal, F., Płomiński, B., & Ürünveren, H. (2023). Utilization of rock dust as cement replacement in cement composites: An alternative approach to sustainable mortar and concrete productions. Journal of Building Engineering, 69(September 2022), 106180. https://doi.org/10.1016/j.jobe.2023.106180 | spa |
| dc.relation.references | Drozd, W., & Leśniak, A. (2018). Ecological wall systems as an element of sustainable development-cost issues. Sustainability (Switzerland), 10(7). https://doi.org/10.3390/su10072234 | spa |
| dc.relation.references | Egodagamage, H., Yapa, H. D., Samith Buddika, H. A. D., Navaratnam, S., & Nguyen, K. (2023). Effective use of biochar as an additive for alkali-activated slag mortar production. Construction and Building Materials, 370(January), 130487. https://doi.org/10.1016/j.conbuildmat.2023.130487 | spa |
| dc.relation.references | Feng, J., Li, Y., Wu, H., Li, X., Feng, F., & Cai, J. (2023). Seismic behavior of precast shear wall with novel bundled connections. Case Studies in Construction Materials, 18(March). https://doi.org/10.1016/j.cscm.2023.e02098 | spa |
| dc.relation.references | Giuliani, F., Autelitano, F., Garilli, E., & Montepara, A. (2020). Expanded polystyrene (EPS) in road construction: Twenty years of Italian experiences. Transportation Research Procedia, 45(2019), 410–417. https://doi.org/10.1016/j.trpro.2020.03.033 | spa |
| dc.relation.references | Gomaa, A. E., Hasan, A. M. M., Mater, Y. M., & AbdelSalam, S. S. (2023). Shell folded footings using different angles and EPS cavity filling: experimental study. International Journal of Geo-Engineering, 14(1). https://doi.org/10.1186/s40703-023-00187-w | spa |
| dc.relation.references | Gutierrez-Velasquez, E. I., Monteiro, S. N., & Colorado, H. A. (2022). Characterization of expanded polystyrene waste as binder and coating material. Case Studies in Construction Materials, 16(November 2021), e00804. https://doi.org/10.1016/j.cscm.2021.e00804 | spa |
| dc.relation.references | Han, W., Pei, S., & Liu, F. (2022). Material characterization of the brick in the Ming Dynasty heritage wall of Pianguan County: A case study. Case Studies in Construction Materials, 16(November 2021), e00940. https://doi.org/10.1016/j.cscm.2022.e00940 | spa |
| dc.relation.references | Hou, L., Huang, W., & Li, X. (2019). Experimental Study on Seismic Performance of Multiple Ecological Composite Wall. IOP Conference Series: Earth and Environmental Science, 304(4), 8–12. https://doi.org/10.1088/1755-1315/304/4/042057 | spa |
| dc.relation.references | ICONTEC. (2001). Norma Técnica Colombiana NTC 4024 Prefabricados de concreto. muestreo y ensayo de prefabricados de concreto no reforzados, vibro compactados | spa |
| dc.relation.references | ICONTEC. (2003). norma técnica ntc colombiana 3495 Método de ensayo para determinar la resistencia a la compresión de muretes de mampostería. | spa |
| dc.relation.references | ICONTEC. (2009a). norma técnica ntc colombiana 4205-1 unidades de mampostería de arcilla cocida. ladrillos y bloques cerámicos. parte 1: mampostería estructural. | spa |
| dc.relation.references | ICONTEC. (2009b). norma técnica ntc colombiana 4205-2 unidades de mampostería de arcilla cocida. ladrillos y bloques cerámicos. parte 2: Mampostería no estructural. | spa |
| dc.relation.references | INVIAS. (2013a). Análisis granulométrico de agregados gruesos finos INV E - 213 - 13. | spa |
| dc.relation.references | INVIAS. (2013b). Determinación de la gravedad específica de las partículas sólidas de los suelos y de la llenante mineral, empleando un picnómetro con agua INV E - 128. | spa |
| dc.relation.references | INVIAS. (2013c). Equivalente de arena de suelos y agregados finos INV E 133 - 13. | spa |
| dc.relation.references | INVIAS. (2013d). Presencia de impurezas orgánicas en arenas usadas para la preparación de morteros y concretos. | spa |
| dc.relation.references | Islam, M. J., & Shahjalal, M. (2021). Effect of polypropylene plastic on concrete properties as a partial replacement of stone and brick aggregate. Case Studies in Construction Materials, 15(June), e00627. https://doi.org/10.1016/j.cscm.2021.e00627 | spa |
| dc.relation.references | Joshua, O., Olusola, K. O., Nduka, D. O., Ede, A. N., Olofinnade, O. M., & Job, O. F. (2020). Modified mix design development specification batched by volume from specified mix design by weight towards improved concrete production. MethodsX, 7, 100817. https://doi.org/10.1016/j.mex.2020.100817 | spa |
| dc.relation.references | Khoukhi, M., Abdelbaqi, S., Hassan, A., & Darsaleh, A. (2021). Impact of dynamic thermal conductivity change of EPS insulation on temperature variation through a wall assembly. Case Studies in Thermal Engineering, 25(February), 100917. https://doi.org/10.1016/j.csite.2021.100917 | spa |
| dc.relation.references | Kisilewicz, T., Fedorczak-Cisak, M., Sadowska, B., Ickiewicz, I., Barkanyi, T., Bomberg, M., & Gobcewicz, E. (2023). On the results of long-term winter testing of active thermal insulation. Energy and Buildings, 296(April). https://doi.org/10.1016/j.enbuild.2023.113412 | spa |
| dc.relation.references | Leśniak, A., & Zima, K. (2018). Cost calculation of construction projects including sustainability factors using the Case Based Reasoning (CBR) method. Sustainability (Switzerland), 10(5). https://doi.org/10.3390/su10051608 | spa |
| dc.relation.references | Li, L., Liu, K., Chen, B., & Wang, R. (2022). Effect of cyclic curing conditions on the tensile bond strength between the polymer modified mortar and the tile. Case Studies in Construction Materials, 17(September), e01531. https://doi.org/10.1016/j.cscm.2022.e01531 | spa |
| dc.relation.references | Liu, G. ping, & Zhang, Y. (2012). Research on the adobe block of the system of new compounded adobe walls. Applied Mechanics and Materials, 193–194, 553–555. https://doi.org/10.4028/www.scientific.net/AMM.193-194.553 | spa |
| dc.relation.references | Ma, Yuetan, Zhou, H., Jiang, X., Polaczyk, P., Xiao, R., Zhang, M., & Huang, B. (2021). The utilization of waste plastics in asphalt pavements: A review. Cleaner Materials, 2(July), 100031. https://doi.org/10.1016/j.clema.2021.100031 | spa |
| dc.relation.references | Ma, Yunfeng, Xu, L., & Shi, X. (2023). The multi-factor influence of frost resistance and prevention effect of tunnel thermal insulation layer in cold areas. Alexandria Engineering Journal, 78(1), 15–25. https://doi.org/10.1016/j.aej.2023.07.028 | spa |
| dc.relation.references | Maghfouri, M., Alimohammadi, V., Gupta, R., Saberian, M., Azarsa, P., Hashemi, M., … Roychand, R. (2022). Drying shrinkage properties of expanded polystyrene (EPS) lightweight aggregate concrete: A review. Case Studies in Construction Materials, 16(September 2021), e00919. https://doi.org/10.1016/j.cscm.2022.e00919 | spa |
| dc.relation.references | Martínez-Barrera, G., Martínez-López, M., del Coz-Díaz, J. J., López-Gayarre, F., & Varela-Guerrero, V. (2019). Waste polymers and gamma radiation on the mechanical improvement of polymer mortars: Experimental and calculated results. Case Studies in Construction Materials, 11. https://doi.org/10.1016/j.cscm.2019.e00273 | spa |
| dc.relation.references | Parracha, J. L., Santos, A. R., Lazera, R., Flores-Colen, I., Gomes, M. G., & Rodrigues, A. M. (2023). Performance of lightweight thermal insulating mortars applied on brick substrate specimens and prototype wall. Construction and Building Materials, 364(September 2022). https://doi.org/10.1016/j.conbuildmat.2022.129954 | spa |
| dc.relation.references | Pham, T. T., Kurihashi, Y., & Masuya, H. (2022). Impact response of reinforced concrete beam with cushion using finite-element analysis. Case Studies in Construction Materials, 17(May), e01147. https://doi.org/10.1016/j.cscm.2022.e01147 | spa |
| dc.relation.references | Posani, M., Veiga, R., & Freitas, V. (2023). Post-Insulating traditional massive walls in Southern Europe: A moderate thermal resistance can be more effective than you think. Energy and Buildings, 295(June). https://doi.org/10.1016/j.enbuild.2023.113299 | spa |
| dc.relation.references | Ren, J., & Lai, Y. (2021). Study on the durability and failure mechanism of concrete modified with nanoparticles and polypropylene fiber under freeze-thaw cycles and sulfate attack. Cold Regions Science and Technology, 188, 103301. https://doi.org/10.1016/j.coldregions.2021.103301 | spa |
| dc.relation.references | Salih Mohammed, A., Mahmood, W., Sarwar Qadir, W., Ghafor, K., & Kurda, R. (2023). Microstructure tests, flow, and mechanical behavior of polymerized cement mortar. Ain Shams Engineering Journal, 14(4), 101922. https://doi.org/10.1016/j.asej.2022.101922 | spa |
| dc.relation.references | Sanjuan, A., Errarte, A., & Bou-Ali, M. M. (2022). Analysis of thermophoresis for separation of polystyrene microparticles in microfluidic devices. International Journal of Heat and Mass Transfer, 189, 122690. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122690 | spa |
| dc.relation.references | Sha, A., Liu, Z., Jiang, W., Qi, L., Hu, L., Jiao, W., & Barbieri, D. M. (2021). Advances and development trends in eco-friendly pavements. Journal of Road Engineering, 1(December), 1–42. https://doi.org/10.1016/j.jreng.2021.12.002 | spa |
| dc.relation.references | Švajlenka, J., & Kozlovská, M. (2018). Houses based on wood as an ecological and sustainable housing alternative-Case study. Sustainability (Switzerland), 10(5). https://doi.org/10.3390/su10051502 | spa |
| dc.relation.references | Wibowo, A. (2019). Cyclic behaviour of expanded polystyrene (Eps) sandwich concrete walls. IOP Conference Series: Materials Science and Engineering, 620(1). https://doi.org/10.1088/1757-899X/620/1/012060 | spa |
| dc.relation.references | Zaragoza-Benzal, A., Ferrández, D., Atanes-Sánchez, E., & Morón, C. (2023). New lightened plaster material with dissolved recycled expanded polystyrene and end-of-life tyres fibres for building prefabricated industry. Case Studies in Construction Materials, 18(October 2022). https://doi.org/10.1016/j.cscm.2023.e02178 | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 2.5 Colombia | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | spa |
| dc.subject | Muretes | spa |
| dc.subject | Bloques de mortero | spa |
| dc.subject | poliestireno expandido | spa |
| dc.subject | Propiedades macánicas | spa |
| dc.subject | Construcción sostenible | spa |
| dc.subject.subjectenglish | Parapet walls | spa |
| dc.subject.subjectenglish | Mortar blocks | spa |
| dc.subject.subjectenglish | Expanded polystyrene | spa |
| dc.subject.subjectenglish | Mechanical properties | spa |
| dc.subject.subjectenglish | Sustainable construction | spa |
| dc.title | Propiedades mecánicas de muretes fabricados con bloques de mortero de eps como material aglomerante. | spa |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
| dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | spa |
| dc.type.local | Tesis de Pregrado | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- PROPIEDADES MECÁNICAS DE MURETES FABRICADOS CON BLOQUES DE MORTERO DE EPS COMO MATERIAL AGLOMERANTE ALVAREZ Y SANTANDER (1) (1).pdf
- Tamaño:
- 827.81 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- articulo principal
Cargando...
- Nombre:
- Autoriz publicación de trabajos en formato digital(V5).pdf
- Tamaño:
- 300.13 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: