caracterización de actividad promotora de crecimiento vegetal en bacterias aisladas de la compostera de la Universidad Libre seccional Pereira

dc.contributor.advisorArias Gaviria, Duverney
dc.contributor.authorRosero Realpe, Mateo
dc.contributor.authorGiraldo Parra, Natalia
dc.coverage.spatialPereiraspa
dc.creator.emailmateo-roseror@unilibre.edu.cospa
dc.creator.emailnatalia-giraldo@unilibre.edu.cospa
dc.date.accessioned2024-01-24T21:29:24Z
dc.date.available2024-01-24T21:29:24Z
dc.date.created2023-12-04
dc.description.abstractEl cultivo de hortalizas es altamente promisorio en Colombia, pero se requiere mayor conocimiento de su manejo agronómico y de los microorganismos que crecen asociados a su rizosfera, de los cuales dependen estas plantas para su nutrición y crecimiento. En este trabajo se aislaron e identificaron de un compost de la Universidad Libre de Pereira las bacterias promotoras de crecimiento como fijación de nitrógeno, solubilización de fosfato y potasio por medio de unos agares que indican la presencia de esta actividad en cada una de ellas, seleccionando las de mejor actividad; posteriormente se llevó a cabo las compatibilidades para evaluar que bacterias se llevan bien con las otras para el trabajo en equipo, eligiéndose solo las que no generan inhibición. Para establecer cuál es el grupo adecuado se formuló cinco insumos con las bacterias seleccionadas según su crecimiento y su trabajo en equipo, ensayándose en una plántula de frijol para así establecer los cambios que se presentaron en su crecimiento y desarrollo.spa
dc.description.abstractenglishThe cultivation of vegetables is highly promising in Colombia, but more knowledge is required of their agronomic management and of the microorganisms that grow associated with their rhizosphere, on which these plants depend for their nutrition and growth. In this work, growth-promoting bacteria such as nitrogen fixation, phosphate and potassium solubilization were isolated and identified from a compost from the Universidad Libre de Pereira by means of agars that indicate the presence of this activity in each of them, selecting those with the best activity; Subsequently, the compatibilities were carried out to evaluate which bacteria get along with the others for teamwork, choosing only those that do not generate inhibition. To establish which is the appropriate group, five inputs were formulated with the bacteria selected according to their growth and their teamwork, being tested on a bean seedling in order to establish the changes that occurred in their growth and development.spa
dc.description.sponsorshipUniversidad Libre Seccional Pereira -- Facultad de Ciencias de la Salud, Exactas y Naturales -- Microbiologíaspa
dc.formatPDFspa
dc.identifier.urihttps://hdl.handle.net/10901/28097
dc.relation.references1. Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D. Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System. Front Microbiol. 2018 Mar 29;9:1606.spa
dc.relation.references2. Mitter EK, Tosi M, Obregón D, Dunfield KE, Germida JJ. Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. Front Sustain Food Syst. 2021 Feb 19;5:29.spa
dc.relation.references3. Koide RT, Mosse B. A history of research on arbuscular mycorrhiza. Mycorrhiza [Internet]. 2004 Apr 16 [cited 2023 May 13];14(3):145–63. Available from: https://link.springer.com/article/10.1007/s00572-004-0307-4.spa
dc.relation.references4. Malusà E, Pinzari F, Canfora L. Efficacy of biofertilizers: Challenges to improve crop production. Microbial Inoculants in Sustainable Agricultural Productivity: Vol 2: Functional Applications [Internet]. 2016 Jan 1 [cited 2023 May 13];17–40.spa
dc.relation.references5. Jose R, Rodriguez N. "Evaluación de etapas del proceso productivo de un bioinsumo dirigido a la degradación de materiales orgánicos y regulación sanitaria de cultivos ".spa
dc.relation.references6. Rocío A, Pabón M, Alexánder H, Quiñonez S. PRODUCTION OF BIOFERTILIZANTES. A DIAGNOSIS FROM THE TECHNOLOGICAL SURVEILLANCE PRODUCCIÓN DE BIOFERTILIZANTES: UN DIAGNÓSTICO DESDE LA VIGILANCIA TECNOLÓGICA [Internet]. Available from: www.bdigital.unal.edu.co/8282/1/spa
dc.relation.references7. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species--opportunistic, avirulent plant symbionts. Nat Rev Microbiol [Internet]. 2004 Jan [cited 2023 Feb 4];2(1):43–56. Available from: https://pubmed.ncbi.nlm.nih.gov/15035008/spa
dc.relation.references8. Eskew DL, Focht DD, Ting IP. Nitrogen fixation, denitrification, and pleomorphic growth in a highly pigmented Spirillum lipoferum. Appl Environ Microbiol [Internet]. 1977 [cited 2023 Apr 15];34(5):582–5. Available from: https://pubmed.ncbi.nlm.nih.gov/22311/spa
dc.relation.references9. Mehnaz S, Lazarovits G. Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol [Internet]. 2006 Apr 6 [cited 2023 Apr 15];51(3):326–35. Available from: https://link.springer.com/article/10.1007/s00248-006-9039-7spa
dc.relation.references10. Sadigov R. Rapid Growth of the World Population and Its Socioeconomic Results. The Scientific World Journal [Internet]. 2022 Mar 23 [cited 2023 May 13];2022. Available from: /pmc/articles/PMC8967589/spa
dc.relation.references11. Worldometer. Worldometer. [cited 2023 May 13]. Population > World. Available from: https://www.worldometers.info/population/world/spa
dc.relation.references12. El mundo alcanza los 8 mil millones de habitantes, de los cuales 662 millones viven en América Latina y el Caribe. Cepal [Internet]. 2022; Available from: https://www.cepal.org/es/noticias/mundo-alcanza-8-mil-millones-habitantes-cuales-662-millones-viven-america-latina-caribespa
dc.relation.references13. Golay C. The Food Crisis and Food Security: Towards a New World Food Order? OpenEditionJournals [Internet]. 2010 Mar 1 [cited 2023 May 13];(1):215–32. Available from: http://journals.openedition.org/poldev/145spa
dc.relation.references14. FAO IGS and E. State of knowledge of soil biodiversity - Status, challenges and potentialities. State of knowledge of soil biodiversity - Status, challenges and potentialities. 2020 Dec 4;spa
dc.relation.references15. Ramírez-Pinzón H. La cebolla de Rama (Allium fistulosum) y su cultivo [Internet]. Corpoica. Humberto L, editor. Bogotá; 2004 [cited 2023 Feb 4]. Available from: https://repository.agrosavia.co/bitstream/handle/20.500.12324/2121/41284_27373.pdf?sequence=1&isAllowed=yspa
dc.relation.references16. Figuerola ELM, Guerrero LD, Türkowsky D, Wall LG, Erijman L. Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale. Environ Microbiol [Internet]. 2015 Mar 1 [cited 2023 May 13];17(3):678–88. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.12497spa
dc.relation.references17. Galloway JN, Leach AM, Erisman JW, Bleeker A, Galloway JN, Leach AM, et al. Nitrogen: the historical progression from ignorance to knowledge, with a view to future solutions. Soil Research [Internet]. 2017 Aug 7 [cited 2023 Apr 15];55(6):417–24. Available from: https://www.publish.csiro.au/sr/SR16334spa
dc.relation.references18. Pereira A. Plant abiotic stress challenges from the changing environment. Front Plant Sci. 2016 Jul 27;7(JULY2016):1123.spa
dc.relation.references19. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations. New Phytologist [Internet]. 2014 Jul 1 [cited 2023 May 13];203(1):32–43. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/nph.12797spa
dc.relation.references20. Srivastav AL. Chemical fertilizers and pesticides: role in groundwater contamination. Agrochemicals Detection, Treatment and Remediation. 2020 Jan 1;143–59.spa
dc.relation.references21. Russeell W. Water as an equalizer: the science and management of south african reservoir lakes and the implications for social and economic development . ResearchGate [Internet]. 2015 Jul [cited 2023 Jan 1]; Available from: https://www.researchgate.net/publication/280008728_WATER_AS_AN_EQUALIZER_THE_SCIENCE_AND_MANAGEMENT_OF_SOUTH_AFRICAN_RESERVOIR_LAKES_AND_THE_IMPLICATIONS_FOR_SOCIAL_AND_ECONOMIC_DEVELOPMENTspa
dc.relation.references22. Fernández J. Afectación a disponibilidad de agroquímicos a nivel mundial - CropLife Latin America. CropLife [Internet]. 2021 [cited 2023 Apr 15]; Available from: https://www.croplifela.org/es/actualidad/noticias/afectacion-a-disponibilidad-de-agroquimicos-a-nivel-mundialspa
dc.relation.references23. Singh AP, Narayanan K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. Environ Dev Sustain [Internet]. 2015 Dec 1 [cited 2023 Apr 15];17(6):1509–25. Available from: https://link.springer.com/article/10.1007/s10668-015-9618-1spa
dc.relation.references24. Global situation of pesticide management in agriculture and public health Report of a 2018 WHO-FAO survey. World Health Organization [Internet]. 2018 [cited 2023 Apr 15]; Available from: https://apps.who.int/iris/bitstream/handle/10665/329971/9789241516884-eng.pdf?sequence=1&isAllowed=yspa
dc.relation.references25. Mandal A, Sarkar B, Mandal S, Vithanage M, Patra AK, Manna MC. Impact of agrochemicals on soil health. Agrochemicals Detection, Treatment and Remediation: Pesticides and Chemical Fertilizers. 2020 Jan 1;161–87.spa
dc.relation.references26. Maggi F, Tang FHM, la Cecilia D, McBratney A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Scientific Data 2019 6:1 [Internet]. 2019 Sep 12 [cited 2023 Apr 15];6(1):1–20. Available from: https://www.nature.com/articles/s41597-019-0169-4spa
dc.relation.references27. Pérez Lavalle L, Bolívar Anillo HJ, Díaz Pérez A. Biofertilizantes en Colombia. Productos de confitería nutracéutica. 2017 Mar 10;179–222.spa
dc.relation.references28. Luna Martínez L, Peniche RAM, Iturriaga H, Medrano SMA, Pacheco Aguilar JR. Characterization of rhizobacteria isolated from tomato and their effect on tomato and bell pepper growth. Artículo Científico Rev Fitotec Mex. 2013;36(1):63–9.spa
dc.relation.references29. Min. Agricultura. Cadena de las Hortalizas. Dirección de Cadenas Agrícolas y Fortestales . 2020;spa
dc.relation.references30. Penagos ÁM, Parra MA, Granados S. La biodiversidad y el desarrollo agropecuario en Colombia: propuesta para avanzar hacia una transformación desde la perspectiva del desarrollo sostenible. Naturaleza y Sociedad Desafíos Medioambientales [Internet]. 2022 May 1 [cited 2023 May 14];(2):51–67. Available from: https://revistas.uniandes.edu.co/index.php/nys/article/view/4732/4331spa
dc.relation.references31. ICA. Instituto Colombiano Agropecuario . [cited 2023 May 14]. Fertilizantes y Bioinsumos. Available from: https://www.ica.gov.co/getdoc/a5c149c5-8ec8-4fed-9c22-62f31a68ae49/fertilizantes-y-bio-insumos-agricolas.aspxspa
dc.relation.references32. Instituto Colombiano Agropecuario. Resolución Bioinsumos 068370 del 27 de mayo de 2020 [Internet]. Bogotá: Congreso de la República; May 27, 2020. Available from: https://www.ica.gov.co/getattachment/Areas/Agricola/Servicios/Fertilizantes-y-Bio-insumos-Agricolas/Resolucion-068370-del-27-de-mayo-de-2020.pdf.aspx?lang=es-COspa
dc.relation.references33. Instituto Colombiano Agropecuario. RESOLUCIÓN No. 00150- Reglamento Técnico de Fertilizantes y Acondicionadores de Suelos para Colombia. Bogotá: Congreso de la República; Jan 21, 2003.spa
dc.relation.references34. ICA. Guia para la entrega de material de referencia en el laboratorio nacional de insumos agrícolas para el registro de productos bioinsumos. Bogotá;spa
dc.relation.references35. Ilangumaran G, Lamont JR, Smith DL. The role of the phytomicrobiome in maintaining biofuel crop production in a changing climate . Microbes for Climate Resilient Agriculture [Internet]. 2018 Feb 23 [cited 2023 May 14];1–24. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/9781119276050.ch1spa
dc.relation.references36. Lal R. Soil conservation and ecosystem services. International soil and water conservation research. 2014;2(3):36–47.spa
dc.relation.references37. Jia P, Liang J liang, Yang S xiang, Zhang S chang, Liu J, Liang Z wei, et al. Plant diversity enhances the reclamation of degraded lands by stimulating plant–soil feedbacks. Journal of Applied Ecology [Internet]. 2020 Jul 1 [cited 2023 May 14];57(7):1258–70. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2664.13625spa
dc.relation.references38. Hoffland E, Kuyper TW, Comans RNJ, Creamer RE. Eco-functionality of organic matter in soils. Plant and Soil 2020 455:1 [Internet]. 2020 Aug 17 [cited 2023 Apr 18];455(1):1–22. Available from: https://link.springer.com/article/10.1007/s11104-020-04651-9spa
dc.relation.references39. Totsche KU, Amelung W, Gerzabek MH, Guggenberger G, Klumpp E, Knief C, et al. Microaggregates in soils. Journal of Plant Nutrition and Soil Science [Internet]. 2018 Feb 1 [cited 2023 Apr 18];181(1):104–36. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jpln.201600451spa
dc.relation.references40. Sahu D, Priyadarshani I, Rath * B. CYANOBACTERIA - as potential biofertilizer. Online) An Online International Journal Available at [Internet]. 2012 [cited 2023 Apr 18];1(3):20–6. Available from: http://www.cibtech.org/cjm.htmspa
dc.relation.references42. Meena VS, Meena SK, Verma JP, Kumar A, Aeron A, Mishra PK, et al. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecol Eng. 2017 Oct 1;107:8–32.spa
dc.relation.references43. Shivakumar S, Bhaktavatchalu S. Role of Plant Growth-Promoting Rhizobacteria (PGPR) in the Improvement of Vegetable Crop Production Under Stress Conditions. In: Microbial Strategies for Vegetable Production. Cham: Springer International Publishing; 2017. p. 81–97.spa
dc.relation.references44. Dilnashin H, Birla H, Hoat TX, Singh HB, Singh SP, Keswani C. Applications of agriculturally important microorganisms for sustainable crop production. Molecular Aspects of Plant Beneficial Microbes in Agriculture. 2020 Jan 1;403–15.spa
dc.relation.references45. Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J King Saud Univ Sci. 2014 Jan 1;26(1):1–20.spa
dc.relation.references46. M A, M.S K. Influence of Selective Herbicides on Plant Growth Promoting Traits of Phosphate Solubilizing Enterobacter asburiae Strain PS2. Res J Microbiol [Internet]. 2010 [cited 2023 Apr 16];05:849–57. Available from: https://docsdrive.com/pdfs/scienceinternational/jm/2010/849-857.pdfspa
dc.relation.references47. da Silva MSR de A, dos Santos B de MS, da Silva CSR de A, da Silva CSR de A, Antunes LF de S, dos Santos RM, et al. Humic Substances in Combination With Plant Growth-Promoting Bacteria as an Alternative for Sustainable Agriculture. Front Microbiol. 2021 Oct 29;12:3025.spa
dc.relation.references48. Saavedra-Díaz J, Galeano-Olaya PE, Canal D. NA. Mecanismo de acción de cinco microorganismos promotores de crecimiento vegetal. Revista de Ciencias Agrícolas [Internet]. 2017 Jun 12 [cited 2023 Feb 10];34(1):17–31. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-01352017000100002&lng=en&nrm=iso&tlng=esspa
dc.relation.references49. Camelo-Rusinque M, Moreno-Galván A, Romero-Perdomo F, Bonilla-Buitrago R. Desarrollo de un sistema de fermentación líquida y de enquistamiento para una bacteria fijadora de nitrógeno con potencial como biofertilizante. Rev Argent Microbiol. 2017 Jul 1;49(3):289–96.spa
dc.relation.references50. Alka S, Shahir S, Ibrahim N, Chai TT, Mohd Bahari Z, Abd Manan F. The role of plant growth promoting bacteria on arsenic removal: A review of existing perspectives. Environ Technol Innov. 2020 Feb 1;17:100602.spa
dc.relation.references41. Kumar S, Diksha, Sindhu SS, Kumar R. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Curr Res Microb Sci. 2022 Jan 1;3:100094.spa
dc.relation.references51. Li J, Wang C, Liang W, Liu S. Rhizosphere Microbiome: The Emerging Barrier in Plant-Pathogen Interactions. Front Microbiol. 2021 Oct 29;12:3381.spa
dc.relation.references52. Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012 Aug 1;17(8):478–86.spa
dc.relation.references53. Lopes LD, Pereira e Silva M de C, Andreote FD. Bacterial abilities and adaptation toward the rhizosphere colonization. Front Microbiol. 2016 Aug 25;7(AUG):1341.spa
dc.relation.references54. Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA. The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci. 2018 Feb 9;9:112.spa
dc.relation.references55. Korenblum E, Massalha H, Aharoni A. Plant–microbe interactions in the rhizosphere via a circular metabolic economy. Plant Cell [Internet]. 2022 Aug 25 [cited 2023 May 14];34(9):3168–82. Available from: https://academic.oup.com/plcell/article/34/9/3168/6604757spa
dc.relation.references56. Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ. Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol [Internet]. 2020 Jun 1 [cited 2023 May 14];128(6):1583–94. Available from: https://academic.oup.com/jambio/article/128/6/1583/6718525spa
dc.relation.references57. Eichmann R, Richards L, Schäfer P. Hormones as go-betweens in plant microbiome assembly. The Plant Journal [Internet]. 2021 Jan 1 [cited 2023 May 14];105(2):518–41. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/tpj.15135spa
dc.relation.references58. Keohane CE, Steele AD, Wuest WM. Synpacts Syn lett The Rhizosphere Microbiome: A Playground for Natural Product Chemists. 2015;26:2739–44.spa
dc.relation.references59. Olanrewaju OS, Glick BR, Babalola OO. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol [Internet]. 2017 Nov 1 [cited 2023 May 14];33(11):197. Available from: /pmc/articles/PMC5686270/spa
dc.relation.references60. Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J King Saud Univ Sci. 2014 Jan 1;26(1):1–20.spa
dc.relation.references61. Goswami D, Thakker JN, Dhandhukia PC. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. http://www.editorialmanager.com/cogentagri [Internet]. 2016 [cited 2023 May 14];2(1). Available from: https://www.tandfonline.com/doi/abs/10.1080/23311932.2015.1127500spa
dc.relation.references62. Perdomo C, Barbazán M. Nitrógeno . [Montevideo]: Universidad de la republica ;spa
dc.relation.references63. Berthrong ST, Yeager CM, Gallegos-Graves L, Steven B, Eichorst SA, Jackson RB, et al. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Appl Environ Microbiol [Internet]. 2014 [cited 2023 Jan 3];80(10):3103–12. Available from: https://journals.asm.org/doi/10.1128/AEM.04034-13spa
dc.relation.references64. Wagner S. Nature Education Knowledge. 2011 [cited 2023 Jan 3]. Biological Nitrogen Fixation . Available from: https://www.nature.com/scitable/knowledge/library/biological-nitrogen-fixation-23570419/spa
dc.relation.references65. Fulthorpe R, MacIvor JS, Jia P, Yasui SLE. The green roof microbiome: Improving plant survival for ecosystem service delivery. Front Ecol Evol. 2018 Feb 2;6(FEB):5.spa
dc.relation.references66. Adesemoye AO, Torbert HA, Kloepper JW. Increased plant uptake of nitrogen from 15N-depleted fertilizer using plant growth-promoting rhizobacteria. Applied Soil Ecology. 2010 Sep 1;46(1):54–8.spa
dc.relation.references67. de la fe Perez Y, Díaz A, Restrepo G, Baldani V. Diversidad de bacterias diazotróficas asociativas potencialmente eficientes en cultivos de importancia económica. ResearchGate [Internet]. 2019 Feb [cited 2023 Jan 5]; Available from: https://www.researchgate.net/publication/331071516_Diversidad_de_bacterias_diazotroficas_asociativas_potencialmente_eficientes_en_cultivos_de_importancia_economicaspa
dc.relation.references68. Dixon R, Kahn D. Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology 2004 2:8 [Internet]. 2004 Aug [cited 2023 Jan 7];2(8):621–31. Available from: https://www.nature.com/articles/nrmicro954spa
dc.relation.references69. Vitousek PM, Menge DNL, Reed SC, Cleveland CC. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences [Internet]. 2013 Jul 5 [cited 2023 Jan 7];368(1621). Available from: https://royalsocietypublishing.org/doi/10.1098/rstb.2013.0119spa
dc.relation.references70. Rubio LM, Ludden PW. Maturation of nitrogenase: A biochemical puzzle. J Bacteriol [Internet]. 2005 [cited 2023 Jan 7];187(2):405–14. Available from: https://journals.asm.org/doi/10.1128/JB.187.2.405-414.2005spa
dc.relation.references71. Pankievicz VCS, Irving TB, Maia LGS, Ané JM. Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biology 2019 17:1 [Internet]. 2019 Dec 3 [cited 2023 Jan 7];17(1):1–17. Available from: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-019-0710-0spa
dc.relation.references72. Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology 2011 28:4 [Internet]. 2011 Dec 24 [cited 2023 May 14];28(4):1327–50. Available from: https://link.springer.com/article/10.1007/s11274-011-0979-9spa
dc.relation.references73. Mpanga IK, Gomez-Genao N, Moradtalab N, Wanke D, Chrobaczek V, Ahmed A, et al. The role of N form supply for PGPM-host plant interactions in maize. Journal of Plant Nutrition and Soil Science [Internet]. 2019 Dec 1 [cited 2023 May 14];182(6):908–20. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jpln.201900133spa
dc.relation.references74. Singh P, Sinhu S. (PDF) Potassium solubilization by rhizosphere bacteria: Influence of nutritional and environmental conditions. ResearchGate [Internet]. 2013 [cited 2023 Feb 10]; Available from: https://www.researchgate.net/publication/273318859_Potassium_solubilization_by_rhizosphere_bacteria_Influence_of_nutritional_and_environmental_conditionsspa
dc.relation.references75. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv. 2014 Mar 1;32(2):429–48.spa
dc.relation.references76. Álvaro GJ. Fertibox. 2019 [cited 2022 May 28]. El potasio y su importancia en el crecimiento vegetal. Available from: https://www.fertibox.net/single-post/potasio-agriculturaspa
dc.relation.references77. Zörb C, Senbayram M, Peiter E. Potassium in agriculture – Status and perspectives. J Plant Physiol. 2014 May 15;171(9):656–69.spa
dc.relation.references78. Demidchik V. Mechanisms and physiological roles of K+ efflux from root cells. J Plant Physiol. 2014 May 15;171(9):696–707.spa
dc.relation.references79. Shanware AS, Kalkar SA, Trivedi MM. Potassium Solublisers: Occurrence, Mechanism and Their Role as Competent Biofertilizers. IntJCurrMicrobiolAppSci [Internet]. 2014 [cited 2023 Feb 10];3(9):622–9. Available from: http://www.ijcmas.comspa
dc.relation.references80. Emsley J. Lenntech . 2001 [cited 2022 Apr 30]. Potasio (K) Propiedades químicas y efectos sobre la salud y el medio ambiente. Available from: https://www.lenntech.es/periodica/elementos/k.htmspa
dc.relation.references81. Abou-el-Seoud II, Abdel-Megeed A. Impact of rock materials and biofertilizations on P and K availability for maize (Zea Maize) under calcareous soil conditions. Saudi J Biol Sci. 2012 Jan 1;19(1):55–63.spa
dc.relation.references82. Ramakrishna W, Yadav R, Li K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Applied Soil Ecology. 2019 Jun;138:10–8.spa
dc.relation.references83. Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A. Rhizosphere microbes: Potassium solubilization and crop productivity – present and future aspects. Potassium Solubilizing Microorganisms for Sustainable Agriculture. 2016 Jan 1;315–25.spa
dc.relation.references84. Asif R, Yasmin R, Mustafa M, Ambreen A, Mazhar M, Rehman A, et al. Phytohormones as Plant Growth Regulators and Safe Protectors against Biotic and Abiotic Stress. Plant Hormones - Recent Advances, New Perspectives and Applications [Internet]. 2022 Mar 30 [cited 2023 May 14]; Available from: https://www.intechopen.com/chapters/81026spa
dc.relation.references85. Poveda J, González-Andrés F. Bacillus as a source of phytohormones for use in agriculture. Appl Microbiol Biotechnol [Internet]. 2021 Dec 1 [cited 2023 May 14];105(23):8629–45. Available from: https://link.springer.com/article/10.1007/s00253-021-11492-8spa
dc.relation.references86. Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev [Internet]. 2007 Jul 1 [cited 2023 May 14];31(4):425–48. Available from: https://academic.oup.com/femsre/article/31/4/425/2399113spa
dc.relation.references87. Dilworth LL, Riley CK, Stennett DK. Plant Constituents: Carbohydrates, Oils, Resins, Balsams, and Plant Hormones. Pharmacognosy: Fundamentals, Applications and Strategy. 2017 Jan 1;61–80.spa
dc.relation.references88. Woodward AW, Bartel B. Auxin: Regulation, Action, and Interaction. Ann Bot [Internet]. 2005 Apr 1 [cited 2023 May 14];95(5):707–35. Available from: https://academic.oup.com/aob/article/95/5/707/201283spa
dc.relation.references89. Zazimalova E, Napier RM. Points of regulation for auxin action. Plant Cell Rep [Internet]. 2003 Mar 1 [cited 2023 May 14];21(7):625–34. Available from: https://link.springer.com/article/10.1007/s00299-002-0562-9spa
dc.relation.references90. Gao X, Zhang Y, He Z, Fu X. Gibberellins. Hormone Metabolism and Signaling in Plants. 2017 Jan 1;107–60.spa
dc.relation.references91. Weiss D, Ori N. Mechanisms of Cross Talk between Gibberellin and Other Hormones. Plant Physiol [Internet]. 2007 Jul 5 [cited 2023 May 14];144(3):1240–6. Available from: https://academic.oup.com/plphys/article/144/3/1240/6106698spa
dc.relation.references92. Muharram M, Satria Bayu A, Prijo Rahardjo T, - al, Wang X, Liang D, et al. Gibberellin And IAA Production by Rhizobacteria From Various Private Forest. IOP Conf Ser Earth Environ Sci [Internet]. 2019 May 1 [cited 2023 May 14];270(1):012018. Available from: https://iopscience.iop.org/article/10.1088/1755-1315/270/1/012018spa
dc.relation.references93. Schmlling T. Cytokinin. Encyclopedia of Biological Chemistry: Second Edition. 2013 Jan 1;627–31.spa
dc.relation.references94. He X, Chen H, Niu B, Wang J. Root Growth Optimizer with Self-Similar Propagation. Math Probl Eng. 2015;2015.spa
dc.relation.references95. de Garcia Salamone IE, Hynes RK, Nelson LM. Role of Cytokinins in Plant Growth Promotion by Rhizosphere Bacteria. In: PGPR: Biocontrol and Biofertilization. Dordrecht: Springer Netherlands; 2005. p. 173–95.spa
dc.relation.references96. Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci. 2017 Apr 4;8:475.spa
dc.relation.references97. Vaseva II, Qudeimat E, Potuschak T, Du Y, Genschik P, Vandenbussche F, et al. The plant hormone ethylene restricts Arabidopsis growth via the epidermis. Proc Natl Acad Sci U S A [Internet]. 2018 Apr 24 [cited 2023 May 14];115(17):E4130–9. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.1717649115spa
dc.relation.references98. Chang C. Q and A: How do plants respond to ethylene and what is its importance? BMC Biol [Internet]. 2016 Jan 27 [cited 2023 May 14];14(1):1–7. Available from: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0230-0spa
dc.relation.references99. Ravanbakhsh M, Sasidharan R, Voesenek LACJ, Kowalchuk GA, Jousset A. Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome [Internet]. 2018 Mar 21 [cited 2023 May 14];6(1):52. Available from: https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0436-1spa
dc.relation.references100. Tamariz-Angeles C, Huamán GD, Palacios-Robles E, Olivera-Gonzales P, Castañeda-Barreto A. Characterization of siderophore-producing microorganisms associated to plants from high-Andean heavy metal polluted soil from Callejón de Huaylas (Ancash, Perú). Microbiol Res. 2021 Sep 1;250:126811.spa
dc.relation.referencesMicrobiol Res. 2021 Sep 1;250:126811. 101. Connolly EL, Guerinot M Lou. Iron stress in plants. Genome Biology 2002 3:8 [Internet]. 2002 Jul 30 [cited 2023 May 14];3(8):1–4. Available from: https://genomebiology.biomedcentral.com/articles/10.1186/gb-2002-3-8-reviews1024spa
dc.relation.references102. Sinha D, Mukherjee S, Mahapatra D. Multifaceted Potential of Plant Growth Promoting Rhizobacteria (PGPR). 2021 Apr 12;205–68.spa
dc.relation.references103. Jha Y, Dehury B, Kumar SPJ, Chaurasia A, Singh UB, Yadav MK, et al. Delineation of molecular interactions of plant growth promoting bacteria induced β-1,3-glucanases and guanosine triphosphate ligand for antifungal response in rice: a molecular dynamics approach. Mol Biol Rep [Internet]. 2022 Apr 1 [cited 2023 May 14];49(4):2579. Available from: /pmc/articles/PMC8924079/spa
dc.relation.references104. Galeano Vanegas NF, Marulanda Moreno SM, Padilla Hurtado BE, Mantilla Afanador JG, Ceballos Aguirre N, Restrepo Franco GM. Antagonism of plant growth promoting rhizobacteria against the causal agent of the vascular wilting of tomato. Rev Colomb Biotecnol [Internet]. 2020 [cited 2023 May 14];22. Available from: https://www.redalyc.org/journal/776/77666754004/77666754004.pdfspa
dc.relation.references105. Shi P, Zhang J, Li X, Zhou L, Luo H, Wang L, et al. Multiple Metabolic Phenotypes as Screening Criteria Are Correlated With the Plant Growth-Promoting Ability of Rhizobacterial Isolates. Front Microbiol [Internet]. 2022 Jan 5 [cited 2023 May 14];12. Available from: /pmc/articles/PMC8767003/spa
dc.relation.references106. Mayz-Figueroa J. Fijación biológica de nitrógeno. Revista Científica UDO Agrícola, ISSN-e 1317-9152, Vol 4, No 1, 2004, págs 1-20 [Internet]. 2004 [cited 2023 May 14];4(1):1–20. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=2221548&info=resumen&idioma=SPAspa
dc.relation.references107. Baldani JI, Reis VM, Videira SS, Boddey LH, Baldani VLD. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil [Internet]. 2014 Oct 25 [cited 2023 May 14];384(1–2):413–31. Available from: https://link.springer.com/article/10.1007/s11104-014-2186-6spa
dc.relation.references108. Juan Esteban D, Rodolfo L. Evaluación preliminar para aislamiento e identificación bioquímica de Streptomyces sp.spa
dc.relation.references109. Acevedo E, Galindo-Castañeda T, Prada F, Navia M, Romero HM. Phosphate-solubilizing microorganisms associated with the rhizosphere of oil palm (Elaeis guineensis Jacq.) in Colombia. Applied Soil Ecology. 2014 Aug 1;80:26–33.spa
dc.relation.references110. Haq IU, Ali S, Iqbal J. Direct production of citric acid from raw starch by Aspergillus niger. Process Biochemistry. 2003 Jan 31;38(6):921–4.spa
dc.relation.references111. Zahir ZA, Arshad M, Frankenberger WT. Plant Growth Promoting Rhizobacteria: Applications and Perspectives In Agriculture. Advances in Agronomy. 2003 Jan 1;81:97–168.spa
dc.relation.references112. Archana G, Buch A, Kumar GN. Pivotal role of organic acid secretion by rhizobacteria in plant growth promotion. Microorganisms in Sustainable Agriculture and Biotechnology [Internet]. 2013 Oct 1 [cited 2023 May 14];35–53. Available from: https://link.springer.com/chapter/10.1007/978-94-007-2214-9_3spa
dc.relation.references113. Etesami H, Emami S, Alikhani HA. Potassium solubilizing bacteria (KSB):: Mechanisms, promotion of plant growth, and future prospects ¬ A review. J Soil Sci Plant Nutr [Internet]. 2017 Dec 1 [cited 2023 May 14];17(4):897–911. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162017000400005&lng=es&nrm=iso&tlng=enspa
dc.relation.references114. Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett [Internet]. 1999 Jan 1 [cited 2023 May 14];170(1):265–70. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1574-6968.1999.tb13383.xspa
dc.relation.references115. Bello-Akinosho M, Makofane R, Adeleke R, Thantsha M, Pillay M, Chirima GJ. Potential of Polycyclic Aromatic Hydrocarbon-Degrading Bacterial Isolates to Contribute to Soil Fertility. Biomed Res Int [Internet]. 2016 [cited 2023 May 14];2016. Available from: https://www.researchgate.net/publication/308915662_Potential_of_Polycyclic_Aromatic_Hydrocarbon-Degrading_Bacterial_Isolates_to_Contribute_to_Soil_Fertilityspa
dc.relation.references116. Rocío A, Pabón M, Alexánder H, Quiñonez S. PRODUCCIÓN DE BIOFERTILIZANTES: UN DIAGNÓSTICO DESDE LA VIGILANCIA TECNOLÓGICA. Revista Agropecuaria y Agroindustrial La Angostura [Internet]. 2017 [cited 2023 May 14];4. Available from: https://revistas.sena.edu.co/index.php/raaa/article/view/4723spa
dc.relation.references117. Pérez Sánchez A, Sing S, Pérez Sánchez EJ, Segura Silva RM. Evaluación técnico-económica y diseño conceptual de una planta de biofertilizantes líquidos. Rev Colomb Biotecnol. 2018 Jul 1;20(2):6–18.spa
dc.relation.references118. Arenas MN. Desarrollo, estabilidad y eficacia de biofertilizantes para la mejora del cultivo de plantas de tomate y maíz. [Barcelona ]: Universidad de Barcelona; 2021.spa
dc.relation.references119. Estela González de Bashan L, Moreno Legorreta M, Pablo Hernández J, Alberto Mendoza Labrador J. Métodos de aplicación de biofertilizantes bacterianos 7.spa
dc.relation.references120. Vílchez JI, Navas A, González-López J, Arcos SC, Manzanera M. Biosafety Test for Plant Growth-Promoting Bacteria: Proposed Environmental and Human Safety Index (EHSI) Protocol. Front Microbiol [Internet]. 2015 [cited 2023 May 14];6(JAN):1514. Available from: /pmc/articles/PMC4703995/spa
dc.relation.references121. Shekhawat K, Fröhlich K, García-Ramírez GX, Trapp MA, Hirt H. Ethylene: A Master Regulator of Plant–Microbe Interactions under Abiotic Stresses. Cells 2023, Vol 12, Page 31 [Internet]. 2022 Dec 21 [cited 2023 May 14];12(1):31. Available from: https://www.mdpi.com/2073-4409/12/1/31/htmspa
dc.relation.references122. Cardona JMH, Álvarez JV, Henao LMÁ. Propiedades fisicoquímicas como base para la caracterización de suelos, cultivados en mora (Rubus glaucus, Benth) en el departamento de Risaralda, Colombia / hysico-chemical properties as a basis characterization of soils farming at blackberry crop (Rubus glaucus, Benth) in Risaralda department, Colombia. Brazilian Journal of Animal and Environmental Research. 2021 Dec 9;4(4):6144–63.spa
dc.relation.references123. Ríos Gallego G, Muñoz Valencia CI, Franco G, Rodríguez Martínez JL. Caracterización del sistema de producción de mora en los municipios de Quinchía, Guática (Risaralda) y Riosucio (Caldas). [cited 2023 May 13]; Available from: https://repository.agrosavia.co/handle/20.500.12324/21109spa
dc.relation.references124. Fajardo Puerta NF. Influencia de las propiedades físicas y químicas en la profundidad del horizonte A de tres suelos de la zona cafetera colombiana. [Internet]. Universidad Nacional de Colombia ; 1979 [cited 2023 May 13]. Available from: https://repository.agrosavia.co/handle/20.500.12324/22891spa
dc.relation.references125. Sach´a J. EL CULTIVO DE LAS HORTALIZAS .spa
dc.relation.references126. Fao. Producción de hortalizas. 2011;spa
dc.relation.references127. Rozano V, Quiróz C, Carlos J, Pulido A, Adrián L, Ayaquica P, et al. HORTALIZAS, LAS LLAVES DE LA ENERGÍA. 2004;spa
dc.relation.references128. Correa É. AGRONEGOCIOS. 2011 [cited 2022 Mar 11]. La hora de las hortalizas. Available from: https://www.agronegocios.co/analisis/ender-correa-2982797/la-hora-de-las-hortalizas-2982626spa
dc.relation.references129. Karthick R, Rajalingam G V, Praneetha S, Sujatha KB, Arumugam T. Effect of micronutrients on growth , flowering and yield of bitter gourd ( Momordica charantia ) cv . CO 1. 2018;6(1):845–8.spa
dc.relation.references130. Naeem M, Aslam Z, Khaliq A, Ahmed JN, Nawaz A, Hussain M. Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat. Brazilian Journal of Microbiology. 2018 Nov 1;49:9–14.spa
dc.relation.references131. González X. AGRONEGOCIOS . 2020 [cited 2022 Mar 11]. Nutrición foliar en las plantas es fundamental para el uso eficiente de fertilizantes. Available from: https://www.agronegocios.co/agricultura/nutricion-foliar-en-las-plantas-es-fundamental-para-el-uso-eficiente-de-fertilizantes-3019052spa
dc.relation.references132. Traxco. Suelos de cultivo - Características, clasificación y textura [Internet]. 2014 [cited 2022 Mar 11]. Available from: https://www.traxco.es/blog/tecnologia-del-riego/suelos-de-cultivospa
dc.relation.references133. Texas A&M University System. Key Factors in Vegetable Production - Vegetable Resources [Internet]. [cited 2022 Mar 10]. Available from: https://aggie-horticulture.tamu.edu/vegetable/guides/organic-vegetable-production-guide/key-factors-in-vegetable-production/spa
dc.relation.references134. Smith AC, Hussy MA. Gram Stain Protocols. American Society for Microbiology [Internet]. 2005 Sep 30 [cited 2023 May 13]; Available from: www.asmscience.orgspa
dc.relation.references135. Taylor SN, Dicarlo RP, Martin DH. Comparison of methylene blue/gentian violet stain to gram’s stain for the rapid diagnosis of gonococcal urethritis in men. Sex Transm Dis. 2011 Nov;38(11):995–6.spa
dc.relation.references136. García SC. Bacterias simbióticas fijadoras de nitrógeno. Vol. 3, CT. 2011.spa
dc.relation.references137. Eleonora M, Pineda B. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Vol. 15, Corpoica Cienc. Tecnol. Agropecu. 2014.spa
dc.relation.references138. Bhardwaj P, Chauhan A, Ranjan A, Mandzhieva SS, Minkina T, Mina U, et al. Assessing Growth-Promoting Activity of Bacteria Isolated from Municipal Waste Compost on Solanum lycopersicum L. Horticulturae. 2023 Feb 1;9(2).spa
dc.relation.references139. Restrepo-Franco GM, Marulanda-Moren S, de la Fe-Pérez Y, Díaz-de la Osa A, Lucia-Baldani V, Hernández-Rodríguez A. Bacterias solubilizadoras de fosfato y sus potencialidades de uso en la promoción del crecimiento de cultivos de importancia económica. CENIC [Internet]. 2014 Sep 10 [cited 2023 May 20];46. Available from: https://www.redalyc.org/pdf/1812/181238817006.pdfspa
dc.relation.references140. Alotaibi MO, Alotibi MM, Eissa MA, Ghoneim AM. Compost and plant growth-promoting bacteria enhanced steviol glycoside synthesis in stevia (Stevia rebaudiana Bertoni) plants by improving soil quality and regulating nitrogen uptake. South African Journal of Botany. 2022 Dec 1;151:306–14.spa
dc.relation.references141. Pikovskayas Agar. Mumbai; 2015.spa
dc.relation.references142. Castellanos-Rozo J. Manual de prácticas de Microbiología Ambiental. 2016.spa
dc.relation.references143. Collection S. Ashby ’ s Mannitol Agar.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/spa
dc.subjectrhizobacteriasspa
dc.subjectconsorcios microbianosspa
dc.subjectBPVCspa
dc.subjectmicronutrientesspa
dc.subjecthortalizasspa
dc.subjectcompostspa
dc.subjectfertilidad del suelospa
dc.subjectmacronutrientesspa
dc.subjectagricultura sosteniblespa
dc.subjectimpacto ambientalspa
dc.subjectagroquímicosspa
dc.subjectactividad promotoraspa
dc.subjectcompatibilidad microbianaspa
dc.subject.subjectenglishrhizobacteriaspa
dc.subject.subjectenglishmicrobial consortiaspa
dc.subject.subjectenglishPGPBspa
dc.subject.subjectenglishmicronutrientsspa
dc.subject.subjectenglishvegetablesspa
dc.subject.subjectenglishcompostspa
dc.subject.subjectenglishsoil fertilityspa
dc.subject.subjectenglishmacronutrientsspa
dc.subject.subjectenglishsustainable agriculturespa
dc.subject.subjectenglishenvironmental impactspa
dc.subject.subjectenglishagrochemicalsspa
dc.subject.subjectenglishpromoting activityspa
dc.subject.subjectenglishmicrobial compatibilityspa
dc.titlecaracterización de actividad promotora de crecimiento vegetal en bacterias aisladas de la compostera de la Universidad Libre seccional Pereiraspa
dc.title.alternativeCharacterization of plant growth promoting activity in bacteria isolated from the compost bin of the Universidad Libre Seccional Pereiraspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Pregradospa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Escáner 1.pdf
Tamaño:
438.46 KB
Formato:
Adobe Portable Document Format
Descripción:
Formato de autorización para la publicación de obras en el Repositorio Institucional
Cargando...
Miniatura
Nombre:
CARACTERIZACIÓN DE ACTIVIDAD PROMOTORA DE CRECIMIENTO VEGETAL EN BACTERIAS AISLADAS DE LA COMPOSTERA DE LA UNIVERSIDAD LIBRE SECCIONAL PEREIRA.pdf
Tamaño:
10.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de grado

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones