Análisis in silico de genes relacionados con rutas enzimáticas para la solubilización de fosfatos de aislamientos de bacterias de suelos agrícolas del Eje Cafetero

dc.contributor.advisorRivera Rodríguez, Silvia Carolina
dc.contributor.authorToro Vasco, María Manuela
dc.coverage.spatialPereiraspa
dc.creator.emailmariam-torov@unilibre.edu.cospa
dc.date.accessioned2025-01-27T17:49:37Z
dc.date.available2025-01-27T17:49:37Z
dc.date.created2024-06-12
dc.description.abstractEl fósforo (P) es un macronutriente esencial para las plantas y desempeña un papel fundamental en su crecimiento y desarrollo, las bacterias promotoras del crecimiento vegetal (PGPB) son microorganismos que interactúan de manera positiva con las plantas, estimulando su crecimiento y mejorando su resistencia a condiciones adversas, una de sus funciones es la solubilización de fosfato mediante diversos mecanismos como la producción de ácidos orgánicos e inorgánicos y la secreción de enzimas fosfatasa; este estudio se basa de seis secuencias 16S rRNA proporcionadas por el Proyecto “Bio-tecnología Agrícola para producción de hortalizas en Risaralda” donde se busca identificar los genes responsables de la solubilización de fosfatos reportados en la literatura dentro del genoma completo de Bacillus cereus y Pseudomonas oryziphila por su mayor capacidad de solubilizar fosfato mediante la herramienta bioinformática BLAST. Se encontraron en Bacillus cereus los genes phnF, phnE, pstSCA y phoU, en el genoma completo de Pseudomonas oryziphila se encontraron los genes pqqABCDEF y pstSAB, además se demostró mediante dendrogramas que, aunque Bacillus cereus y Pseudomonas oryziphila sean lejanos genéticamente, los genes responsables de la solubilización de fosfato están relacionados genéticamente, lo que puede demostrar similitudes funcionales. En conclusión, los hallazgos destacan el potencial significativo de especies como Bacillus cereus y Pseudomonas oryziphila en la promoción del crecimiento vegetal y su utilidad como componentes clave en bioinsumos agrícolas.spa
dc.description.abstractenglishPhosphorus (P) is an essential macronutrient for plants and plays a fundamental role in their growth and development, plant growth promoting bacteria (PGPB) are microorganisms that interact positively with plants, stimulating their growth and improving their resistance to adverse conditions, one of its functions is the solubilization of phosphate through various mechanisms such as the production of organic and inorganic acids and the secretion of phosphatase enzymes; This study is based on six 16S rRNA sequences provided by the project “Agricultural Biotechnology for vegetable production in Risaralda”, which seeks to identify the genes responsible for phosphate solubilization reported in the literature within the complete genome of Bacillus cereus and Pseudomonas oryziphila for their greater capacity to solubilize phosphate using the BLAST bioinformatics tool. It was found in Bacillus cereus genes phnF, phnE, pstSCA and phoU, in the complete genome of Pseudomonas oryziphila genes pqqABCDEF and pstSAB were found, in addition it was demonstrated by dendrograms that, although Bacillus cereus and Pseudomonas oryziphila are genetically distant, the genes responsible for phosphate solubilization are genetically related, which may demonstrate functional similarities. In conclusion, the findings highlight the significant potential of species such as Bacillus cereus and Pseudomonas oryziphila in plant growth promotion and their usefulness as key components in agricultural bioinputs.spa
dc.description.sponsorshipUniversidad Libre Seccional Pereira -- Facultad de Ciencias de la Salud, Exactas y Naturales -- Microbiologíaspa
dc.formatPDFspa
dc.identifier.urihttps://hdl.handle.net/10901/30499
dc.relation.referencesBueno L. Avance Final de Programas y Proyectos de CTeI: “Bio-tecnología Agrícola para producción de hortalizas en Risaralda.” Pereira; 2023 May.spa
dc.relation.referencesA World Bank Group Flagship Report Global Economic Prospects. 2023;spa
dc.relation.referencesRees RM, Baddeley JA, Bhogal A, Ball BC, Chadwick DR, Macleod M, et al. Nitrous oxide mitigation in UK agriculture. https://doi.org/101080/003807682012733869 [Internet]. 2013 Feb [cited 2023 Mar 14];59(1):3–15. Available from: https://www.tandfonline.com/doi/abs/10.1080/00380768.2012.733869spa
dc.relation.referencesMiransari M. Soil microbes and plant fertilization. Appl Microbiol Biotechnol [Internet]. 2011 Dec [cited 2023 Sep 29];92(5):875–85. Available from: https://pubmed.ncbi.nlm.nih.gov/21989562/spa
dc.relation.referencesLatha S, Assistant A, John S, Aggani SL. Desarrollo de biofertilizantes y su perspectiva de futuro. Scholars Academic Journal of Pharmacy [Internet]. 2013 [cited 2023spa
dc.relation.referencesAlori E, Dare M, reviews OBS agriculture, 2017 undefined. Microbial inoculants for soil quality and plant health. Springer [Internet]. [cited 2023 Mar 14]; Available from: https://link.springer.com/chapter/10.1007/978-3-319-48006-0_9spa
dc.relation.referencesAl-Tammar FK, Khalifa AYZ. Plant growth promoting bacteria drive food security. Braz J Biol [Internet]. 2022 [cited 2023spa
dc.relation.referencesVejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review. Molecules [Internet]. 2016 May 1 [cited 2023 May 30];21(5). Available from: /pmc/articles/PMC6273255/spa
dc.relation.referencesBhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol [Internet]. 2012 Apr [cited 2023 May 30];28(4):1327–50. Available from: https://pubmed.ncbi.nlm.nih.gov/22805914/spa
dc.relation.referencesCalvo P, Nelson L, Kloepper JW. Agricultural uses of plant biostimulants. Plant Soil [Internet]. 2014 Oct 1 [cited 2023 Mar 14];383(1–2):3–41. Available from: https://link.springer.com/article/10.1007/s11104-014-2131-8spa
dc.relation.referencesMolina G, Bicas JL, Moraes ÉA, Maróstica MR, Pastore GM. Recent developments and industrial perspectives in the microbial production of bioflavors. Applications of Microbial Engineering [Internet]. 2013 Jan 1 [cited 2023 Mar 14];122–57. Available from: https://www.taylorfrancis.com/chapters/edit/10.1201/b15250-8/recentdevelopments-industrial-perspectives-microbial-production-bioflavorsspa
dc.relation.referencesSchirawski J, Perlin MH. Plant–Microbe Interaction 2017—The Good, the Bad and the Diverse. Int J Mol Sci [Internet]. 2018 May 5 [cited 2023 May 30];19(5). Available from: /pmc/articles/PMC5983726/spa
dc.relation.referencesTuran M, Kıtır N, Alkaya Ü, Günes A, … ŞTP, 2016 undefined. Making soil more accessible to plants: the case of plant growth promoting rhizobacteria. books.google.com [Internet]. [cited 2023 May 30]; Available from: https://books.google.com/books?hl=es&lr=&id=kcKQDwAAQBAJ&oi=fnd&pg=PA61 &ots=Tst2U9zzro&sig=GXsCCbtEBKzFu3y_AsBa8RPCHfsspa
dc.relation.referencesSaavedra-Díaz J, Galeano-Olaya PE, Canal D. NA. Mecanismo de acción de cinco microorganismos promotores de crecimiento vegetal. Revista de Ciencias Agrícolas [Internet]. 2017 Jun 12 [cited 2023 May 30];34(1):17–31. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120- 01352017000100002&lng=en&nrm=iso&tlng=esspa
dc.relation.referencesRaaijmakers JM, Mazzola M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol [Internet]. 2012 Sep [cited 2023 May 30];50:403–24. Available from: https://pubmed.ncbi.nlm.nih.gov/22681451/spa
dc.relation.referencesCornforth DM, Popat R, McNally L, Gurney J, Scott-Phillips TC, Ivens A, et al. Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc Natl Acad Sci U S A [Internet]. 2014 Mar 18 [cited 2023 May 30];111(11):4280–4. Available from: /pmc/articles/PMC3964068/spa
dc.relation.referencesAlori ET, Glick BR, Babalola OO. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front Microbiol [Internet]. 2017 Jun 2 [cited 2023 May 30];8(JUN). Available from: /pmc/articles/PMC5454063/spa
dc.relation.referencesKhalifa AYZ, Almalki MA. Isolation and characterization of an endophytic bacterium, Bacillus megaterium BMN1, associated with root-nodules of Medicago sativa L. growing in Al-Ahsaa region, Saudi Arabia. Ann Microbiol [Internet]. 2015 Jun 26 [cited 2023 May 3];65(2):1017–26. Available from: https://link.springer.com/articles/10.1007/s13213-014-0946-4spa
dc.relation.referencesKhalifa A. Enterobacter. Beneficial Microbes in Agro-Ecology: Bacteria and Fungi. 2020 Jan 1;259–70.spa
dc.relation.referencesAldayel MF, Khalifa A. Isolation and characterization of bacteria from tomato and assessment of its plant growth-promoting traits in three economically important crops in Al-Ahsa region, Saudi Arabia py. J Environ Biol. 2021 Jul 1;42(4):973–81.spa
dc.relation.referencesAl-Tammar FK, Khalifa AYZ. Plant growth promoting bacteria drive food security. Brazilian Journal of Biology. 2022;82spa
dc.relation.referencesEcheverri Echeverri J. Dinámica del fósforo en suelo-planta en regiones tropicales [Internet]. [Medellín, Colombia]: Universidad Nacional de Colombia; 2018 [cited 2023 May 30]. Available from: https://repositorio.unal.edu.co/bitstream/handle/unal/69611/39456768.2018.pdf?seq uence=1&isAllowed=yspa
dc.relation.referencesShrivastava M, Srivastava PC, D’Souza SF. Phosphate-solubilizing microbes: Diversity and phosphates solubilization mechanism. Role of Rhizospheric Microbes in Soil: Volume 2: Nutrient Management and Crop Improvement [Internet]. 2018 Jun 19 [cited 2023 Mar 14];137–65. Available from: https://link.springer.com/chapter/10.1007/978-981-13-0044-8_5spa
dc.relation.referencesZaidi A, Khan MS, Ahemad M, Oves M. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung [Internet]. 2009 [cited 2023 May 30];56(3):263–84. Available from: https://pubmed.ncbi.nlm.nih.gov/19789141/spa
dc.relation.references. Mixquititla-Casbis G, Villegas-Torres ÓG. Importancia de los fosfatos y fosfitos en la nutrición de cultivos. 2016spa
dc.relation.referencesBecquer A, Trap J, Irshad U, Ali MA, Claude P. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Front Plant Sci [Internet]. 2014 Oct 15 [cited 2023 May 3];5(OCT):15. Available from: /pmc/articles/PMC4197793/spa
dc.relation.referencesSociedad Mexicana de la Ciencia del Suelo. Y, García-Oliva F, Tapia-Torres Y, García-Oliva F. Terra : organo oficial de divulgación de la Sociedad Mexicana de la Ciencia del Suelo, A.C. [Internet]. Vol. 31, Terra Latinoamericana. SMCS; 2013 [cited 2023 Dec 3]. 231–242 p. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187- 57792013000400231&lng=es&nrm=iso&tlng=esspa
dc.relation.referencesRibeiro VP, Marriel IE, Sousa SM de, Lana UG de P, Mattos BB, Oliveira CA de, et al. Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Brazilian Journal of Microbiology. 2018 Nov 1;49:40–6.spa
dc.relation.referencesSpohn M, Treichel NS, Cormann M, Schloter M, Fischer D. Distribution of phosphatase activity and various bacterial phyla in the rhizosphere of Hordeum vulgare L. depending on P availability. Soil Biol Biochem. 2015 Oct 1;89:44–51.spa
dc.relation.referencesHinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by rootinduced chemical changes: A review. Plant Soil [Internet]. 2001 [cited 2023 May 3];237(2):173–95. Available from: https://link.springer.com/article/10.1023/A:1013351617532spa
dc.relation.references. Bomfim CA, Coelho LGF, do Vale HMM, de Carvalho Mendes I, Megías M, Ollero FJ, et al. Brief history of biofertilizers in Brazil: from conventional approaches to new biotechnological solutions. Brazilian Journal of Microbiology [Internet]. 2021 Dec 1 [cited 2023 Mar 14];52(4):2215. Available from: /pmc/articles/PMC8578473/spa
dc.relation.referencesConstanza L, Ramírez C, Yurieth Z, Galvez2 A, Estefanía V, Burbano2 M. Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal.spa
dc.relation.referencesSharma SB, Sayyed RZ, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus [Internet]. 2013 [cited 2023 May 30];2(1). Available from: /pmc/articles/PMC4320215/spa
dc.relation.references. Zhu F, Qu L, Hong X, Sun X. Isolation and Characterization of a PhosphateSolubilizing Halophilic Bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China. Evid Based Complement Alternat Med [Internet]. 2011 [cited 2023 May 30];2011. Available from: /pmc/articles/PMC3118493/spa
dc.relation.referencesJha A, Sharma D, Saxena J. Effect of single and dual phosphate-solubilizing bacterial strain inoculations on overall growth of mung bean plants. http://dx.doi.org/101080/036503402011561835 [Internet]. 2012 Sep [cited 2023 May 30];58(9):967–81. Available from: https://www.tandfonline.com/doi/abs/10.1080/03650340.2011.561835spa
dc.relation.references. Rodríguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv [Internet]. 1999 Oct [cited 2023 May 30];17(4–5):319–39. Available from: https://pubmed.ncbi.nlm.nih.gov/14538133/spa
dc.relation.referencesJiang Z, Zhang X, Wang Z, Cao B, Deng S, Bi M, et al. Enhanced biodegradation of atrazine by Arthrobacter sp. DNS10 during co-culture with a phosphorus solubilizing bacteria: Enterobacter sp. P1. Ecotoxicol Environ Saf [Internet]. 2019 May 15 [cited 2023 May 30];172:159–66. Available from: https://pubmed.ncbi.nlm.nih.gov/30708227/spa
dc.relation.referencesJahan M, Nassiri Mahallati M, Amiri MB, Ehyayi HR. Radiation absorption and use efficiency of sesame as affected by biofertilizers inoculation in a low input cropping system. Ind Crops Prod. 2013 May 1;43(1):606–11.spa
dc.relation.referencesJiang Z, Zhang X, Wang Z, Cao B, Deng S, Bi M, et al. Enhanced biodegradation of atrazine by Arthrobacter sp. DNS10 during co-culture with a phosphorus solubilizing bacteria: Enterobacter sp. P1. Ecotoxicol Environ Saf [Internet]. 2019 May 15 [cited 2023 May 30];172:159–66. Available from: https://pubmed.ncbi.nlm.nih.gov/30708227/spa
dc.relation.referencesZhu F, Qu L, Hong X, Sun X. Isolation and Characterization of a PhosphateSolubilizing Halophilic Bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China. Evid Based Complement Alternat Med [Internet]. 2011 [cited 2023 May 30];2011. Available from: /pmc/articles/PMC3118493/spa
dc.relation.referencesPaul D, Sinha SN. Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Ann Agrar Sci. 2017 Mar 1;15(1):130–6.spa
dc.relation.referencesKorir H, Mungai NW, Thuita M, Hamba Y, Masso C. Co-inoculation Effect of Rhizobia and Plant Growth Promoting Rhizobacteria on Common Bean Growth in a Low Phosphorus Soil. Front Plant Sci [Internet]. 2017 Feb 7 [cited 2023 May 30];8(FEBRUARY). Available from: /pmc/articles/PMC5293795/spa
dc.relation.referencesBehera BC, Yadav H, Singh SK, Mishra RR, Sethi BK, Dutta SK, et al. Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. Journal of Genetic Engineering & Biotechnology [Internet]. 2017 Jun 1 [cited 2023 May 30];15(1):169. Available from: /pmc/articles/PMC6296638/spa
dc.relation.referencesPostma J, Nijhuis EH, Someus E. Selection of phosphorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal. Applied Soil Ecology. 2010 Nov 1;46(3):464–9.spa
dc.relation.referencesTimofeeva A, Galyamova M, Sedykh S. Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture. Plants [Internet]. 2022 Aug 1 [cited 2023 May 30];11(16). Available from: /pmc/articles/PMC9414882/spa
dc.relation.referencesWhite C, Sayer JA, Gadd GM. Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev [Internet]. 1997 Jul [cited 2023 May 30];20(3–4):503–16. Available from: https://pubmed.ncbi.nlm.nih.gov/9299717/spa
dc.relation.referencesKang J, Amoozegar A, Hesterberg D, Osmond DL. Phosphorus leaching in a sandy soil as affected by organic and inorganic fertilizer sources. Geoderma. 2011 Mar 15;161(3–4):194–201.spa
dc.relation.referencesRosado AS, De Azevedo FS, Da Cruz DW, Van Elsas JD, Seidin L. Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane or rhizosphere soil of different grasses. J Appl Microbiol [Internet]. 1998 Feb 1 [cited 2023 May 30];84(2):216–26. Available from: https://academic.oup.com/jambio/article/84/2/216/6723930spa
dc.relation.referencesNahas E. Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J Microbiol Biotechnol [Internet]. 1996 [cited 2023 May 30];12(6):567–72. Available from: https://pubmed.ncbi.nlm.nih.gov/24415416spa
dc.relation.referencesSeshachala U, Tallapragada P. Phosphate Solubilizers from the Rhizosphere of Piper nigrum L. in Karnataka, India. Chil J Agric Res [Internet]. 2012 [cited 2023 May 30];72(3):397–403. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718- 58392012000300014&lng=en&nrm=iso&tlng=enspa
dc.relation.referencesRawat P, Das S, Shankhdhar D, Shankhdhar SC. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J Soil Sci Plant Nutr. 2021 Mar 30;21(1):49–68.spa
dc.relation.referencesPrabhu N, Borkar S, Garg S. Phosphate solubilization by microorganisms: Overview, mechanisms, applications and advances. In: Advances in Biological Science Research: A Practical Approach. Elsevier; 2019. p. 161–76.spa
dc.relation.referencesPineda Beltrán M. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal [Internet]. Vol. 15, Corpoica Cienc. Tecnol. Agropecu. 2014 [cited 2023 May 30]. Available from: http://www.scielo.org.co/pdf/ccta/v15n1/v15n1a09.pdfspa
dc.relation.referencesKim KY, McDonald GA, Jordan D. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fertil Soils [Internet]. 1997 May [cited 2023 May 31];24(4):347–52. Available from: https://link.springer.com/article/10.1007/s003740050256spa
dc.relation.referencesConstanza L, Ramírez C, Yurieth Z, Galvez2 A, Estefanía V, Burbano2 M. Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal.spa
dc.relation.referencesTransformation of organic rhizodepositions by rhizosphere bacteria and its influence on the availability of tertiary calcium phosphate [Internet]. [cited 2023 May 31]. Available from: https://eurekamag.com/research/003/601/003601150.phpspa
dc.relation.referencesWan W, Qin Y, Wu H, Zuo W, He H, Tan J, et al. Isolation and Characterization of Phosphorus Solubilizing Bacteria With Multiple Phosphorus Sources Utilizing Capability and Their Potential for Lead Immobilization in Soil. Front Microbiol. 2020 Apr 23;11:752spa
dc.relation.referencesVazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y. Phosphatesolubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils [Internet]. 2000 [cited 2023 May 31];30(5– 6):460–8. Available from: https://link.springer.com/article/10.1007/s003740050024spa
dc.relation.referencesFlorentino AP, Weijma J, Stams AJM, Sánchez-Andrea I. Ecophysiology and Application of Acidophilic Sulfur-Reducing Microorganisms. Grand Challenges in Biology and Biotechnology [Internet]. 2016 [cited 2023 May 31];1:141–75. Available from: https://link.springer.com/chapter/10.1007/978-3-319-13521-2_5spa
dc.relation.references. Shrivastava M, Srivastava PC, D’Souza SF. Phosphate-solubilizing microbes: Diversity and phosphates solubilization mechanism. Role of Rhizospheric Microbes in Soil: Volume 2: Nutrient Management and Crop Improvement [Internet]. 2018 Jun 19 [cited 2023 May 31];137–65. Available from: https://link.springer.com/chapter/10.1007/978-981-13-0044-8_5spa
dc.relation.referencesNannipieri P, Giagnoni L, Landi L, Renella G. Role of Phosphatase Enzymes in Soil. 2011 [cited 2023 Mar 14];215–43. Available from: https://link.springer.com/chapter/10.1007/978-3-642-15271-9_9spa
dc.relation.referencesHeuck C, Smolka G, Whalen ED, Frey S, Gundersen P, Moldan F, et al. Effects of long-term nitrogen addition on phosphorus cycling in organic soil horizons of temperate forests. Biogeochemistry [Internet]. 2018 Nov 1 [cited 2023 Mar 14];141(2):167–81. Available from: https://link.springer.com/article/10.1007/s10533- 018-0511-5spa
dc.relation.referencesJarosch KA, Doolette AL, Smernik RJ, Tamburini F, Frossard E, Bünemann EK. Characterisation of soil organic phosphorus in NaOH-EDTA extracts: A comparison of 31P NMR spectroscopy and enzyme addition assays. Soil Biol Biochem. 2015 Dec 1;91:298–309.spa
dc.relation.references. Jorquera MA, Hernández MT, Rengel Z, Marschner P, De La Luz Mora M. Isolation of culturable phosphobacteria with both phytate-mineralization and phosphatesolubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology and Fertility of Soils 2008 44:8 [Internet]. 2008 May 7 [cited 2023 Mar 14];44(8):1025– 34. Available from: https://link.springer.com/article/10.1007/s00374-008-0288-0spa
dc.relation.referencesRodríguez H, Rossolini GM, Gonzalez T, Li J, Glick BR. Isolation of a gene from Burkholderia cepacia IS-16 encoding a protein that facilitates phosphatase activity. Curr Microbiol [Internet]. 2000 [cited 2023 Mar 14];40(6):362–6. Available from: https://link.springer.com/article/10.1007/s002840010071spa
dc.relation.referencesThaller MC, Berlutti F, Schippa S, Iori P, Passariello C, Rossolini GM. Heterogeneous patterns of acid phosphatases containing low-molecular-mass polypeptides in members of the family Enterobacteriaceae. Int J Syst Bacteriol [Internet]. 1995 Apr 1 [cited 2023 Mar 14];45(2):255–61. Available from: https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-45- 2-255spa
dc.relation.referencesLim BL, Yeung P, Cheng C, Hill JE. Distribution and diversity of phytate-mineralizing bacteria. ISME J [Internet]. 2007 Aug 12 [cited 2023 Mar 14];1(4):321–30. Available from: https://pubmed.ncbi.nlm.nih.gov/18043643/spa
dc.relation.referencesRichardson AE, Simpson RJ. Focus Issue on Phosphorus Plant Physiology: Soil Microorganisms Mediating Phosphorus Availability Update on Microbial Phosphorus. Plant Physiol [Internet]. 2011 [cited 2023 Mar 14];156(3):989. Available from: /pmc/articles/PMC3135950/spa
dc.relation.referencesCheng C, Lim BL. Beta-propeller phytases in the aquatic environment. Arch Microbiol [Internet]. 2006 Mar [cited 2023 Mar 14];185(1):1–13. Available from: https://pubmed.ncbi.nlm.nih.gov/16402222/spa
dc.relation.referencesKerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J. Isolation, Characterization, Molecular Gene Cloning, and Sequencing of a Novel Phytase from Bacillus subtilis. Appl Environ Microbiol [Internet]. 1998 [cited 2023 Mar 14];64(6):2079. Available from: /pmc/articles/PMC106281/spa
dc.relation.referencesKim YO, Lee JK, Kim HK, Yu JH, Oh TK. Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiol Lett [Internet]. 1998 May 1 [cited 2023 Mar 14];162(1):185–91. Available from: https://academic.oup.com/femsle/article/162/1/185/629318spa
dc.relation.referencesTye A, Siu F, Leung T, Lim B. Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl Microbiol Biotechnol [Internet]. 2002 [cited 2023 Mar 14];59(2–3):190–7. Available from: https://pubmed.ncbi.nlm.nih.gov/12111145/spa
dc.relation.referencesHuang H, Shao N, Wang Y, Luo H, Yang P, Zhou Z, et al. A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Appl Microbiol Biotechnol [Internet]. 2009 May [cited 2023 Mar 14];83(2):249–59. Available from: https://pubmed.ncbi.nlm.nih.gov/19139877/spa
dc.relation.referencesEisenberg D, Marcotte E, McLachlan AD, Pellegrini M. Bioinformatic challenges for the next decade(s). Philosophical Transactions of the Royal Society B: Biological Sciences [Internet]. 2006 Mar 3 [cited 2023 Dec 3];361(1467):525. Available from: /pmc/articles/PMC1609334/spa
dc.relation.referencesCamacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: Architecture and applications. BMC Bioinformatics. 2009 Dec 15;10.spa
dc.relation.referencesBLAST Homepage and Selected Search Pages. [cited 2024 Jan 10]; Available from: https://blast.ncbi.nlm.nih.govspa
dc.relation.referencesEMBnet Colombia - Centro de Bioinformática del Instituto de Biotecnología [Internet]. [cited 2024 Feb 1]. Available from: http://bioinf.ibun.unal.edu.co/documentos/algoritmos/algor.phpspa
dc.relation.referencesHasija Y. Structural bioinformatics. All About Bioinformatics [Internet]. 2023 Jan 1 [cited 2024 Feb 1];135–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780443152504000058spa
dc.relation.referencesChowdhury B, Garai G. A review on multiple sequence alignment from the perspective of genetic algorithm. Genomics. 2017 Oct 1;109(5–6):419–31.spa
dc.relation.referencesNye TMW. Trees of trees: An approach to comparing multiple alternative phylogenies. Syst Biol. 2008 Oct;57(5):785–94.spa
dc.relation.referencesSilva [Internet]. [cited 2024 Jun 4]. Available from: https://www.arb-silva.de/spa
dc.relation.referencesRasul M, Yasmin S, Suleman M, Zaheer A, Reitz T, Tarkka MT, et al. Glucose dehydrogenase gene containing phosphobacteria for biofortification of Phosphorus with growth promotion of rice. Microbiol Res. 2019 Jun 1;223–225:1–12.spa
dc.relation.referencesBharwad K, Rajkumar S. Modulation of PQQ-dependent glucose dehydrogenase (mGDH and sGDH) activity by succinate in phosphate solubilizing plant growth promoting Acinetobacter sp. SK2. 3 Biotech [Internet]. 2020 Jan 1 [cited 2023 Nov 16];10(1):5. Available from: /pmc/articles/PMC6879680/spa
dc.relation.referencesJin T, Ren J, Li Y, Bai B, Liu R, Wang Y. Plant growth-promoting effect and genomic analysis of the P. putida LWPZF isolated from C. japonicum rhizosphere. AMB Express [Internet]. 2022 Dec 1 [cited 2023 Nov 16];12(1):101. Available from: /pmc/articles/PMC9346032/spa
dc.relation.referencesAdeleke BS, Ayangbenro AS, Babalola OO. Genomic analysis of endophytic bacillus cereus t4s and its plant growth-promoting traits. Plants [Internet]. 2021 Sep 1 [cited 2023 Nov 16];10(9). Available from: /pmc/articles/PMC8467928/spa
dc.relation.referencesSachman-Ruíz B, Wong-Villarreal A, Aguilar-Marcelino L, Lozano-Aguirre LF, Espinosa-Zaragoza S, Reyes-Reyes AL, et al. Nematicidal, Acaricidal and Plant Growth-Promoting Activity of Enterobacter Endophytic Strains and Identification of Genes Associated with These Biological Activities in the Genomes. Plants [Internet]. 2022 Nov 1 [cited 2023 Nov 27];11(22). Available from: /pmc/articles/PMC9695364/spa
dc.relation.referencesJan F, Arshad H, Ahad M, Jamal A, Smith DL. In vitro assessment of Bacillus subtilis FJ3 affirms its biocontrol and plant growth promoting potential. Front Plant Sci [Internet]. 2023 [cited 2024 Jan 9];14. Available from: /pmc/articles/PMC10395516/spa
dc.relation.referencesSouza AES de, Filla VA, Silva JPM da, Barbosa Júnior MR, Oliveira-Paiva CA de, Coelho AP, et al. Application of Bacillus spp. Phosphate-Solubilizing Bacteria Improves Common Bean Production Compared to Conventional Fertilization. Plants [Internet]. 2023 Nov 1 [cited 2024 Jan 9];12(22). Available from: /pmc/articles/PMC10675661/spa
dc.relation.referencesphy - 3-phytase - Bacillus subtilis (strain 168) | UniProtKB | UniProt [Internet]. [cited 2024 Jan 10]. Available from: https://www.uniprot.org/uniprotkb/P42094/entryspa
dc.relation.referencesphoA - Alkaline phosphatase 4 - Bacillus subtilis (strain 168) | UniProtKB | UniProt [Internet]. [cited 2024 Jan 10]. Available from: https://www.uniprot.org/uniprotkb/P19406/entryspa
dc.relation.referencesphoB - Alkaline phosphatase 3 - Bacillus subtilis (strain 168) | UniProtKB | UniProt [Internet]. [cited 2024 Jan 10]. Available from: https://www.uniprot.org/uniprotkb/P19405/entryspa
dc.relation.referencesBawane R, Tantwai K, Kadam-Bedekar M, Kumar S, Gontia I, Tiwari S. Molecular Analysis of Phytase Gene Cloned from Bacillus subtilis. 2011;spa
dc.relation.referencesAllenby NEE, O’Connor N, Prágai Z, Ward AC, Wipat A, Harwood CR. Genome-Wide Transcriptional Analysis of the Phosphate Starvation Stimulon of Bacillus subtilis. J Bacteriol [Internet]. 2005 Dec [cited 2023 Dec 3];187(23):8063. Available from: /pmc/articles/PMC1291260/spa
dc.relation.referencesBharwad K, Ghoghari N, Rajkumar S. Crc Regulates Succinate-Mediated Repression of Mineral Phosphate Solubilization in Acinetobacter sp. SK2 by Modulating Membrane Glucose Dehydrogenase. Front Microbiol [Internet]. 2021 Jul 12 [cited 2024 Jan 10];12. Available from: /pmc/articles/PMC8312277/spa
dc.relation.referencesKulkova I, Dobrzyński J, Kowalczyk P, Bełżecki G, Kramkowski K. Plant Growth Promotion Using Bacillus cereus. Int J Mol Sci [Internet]. 2023 Jun 1 [cited 2024 Jan 10];24(11). Available from: https://pubmed.ncbi.nlm.nih.gov/37298706/spa
dc.relation.referencesGao G, Zhang Y, Niu S, Chen Y, Wang S, Anwar N, et al. Reclassification of Enterobacter sp. FY-07 as Kosakonia oryzendophytica FY-07 and Its Potential to Promote Plant Growth. Microorganisms [Internet]. 2022 Mar 1 [cited 2024 Jan 11];10(3). Available from: https://pubmed.ncbi.nlm.nih.gov/35336150/spa
dc.relation.referencesMetcalf WW, Wanner BL. Mutational analysis of an Escherichia coli fourteen-gene operon for phosphonate degradation, using TnphoA’ elements. J Bacteriol [Internet]. 1993 [cited 2024 Mar 11];175(11):3430. Available from: /pmc/articles/PMC204742/?report=abstractspa
dc.relation.referencesLui P, Zhang CK. Detection and quantification of phnE gene from oil-contaminated soil samples by competitive quantitative PCR. Microbiol Res. 2007 Sep 26;162(4):335–40.spa
dc.relation.referencesNarayanasamy S, Thankappan S, Kumaravel S, Ragupathi S, Uthandi S. Complete genome sequence analysis of a plant growth-promoting phylloplane Bacillus altitudinis FD48 offers mechanistic insights into priming drought stress tolerance in rice. Genomics. 2023 Jan 1;115(1):110550.spa
dc.relation.referencesSurin BP, Rosenberg H, Cox GB. Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships. J Bacteriol [Internet]. 1985 [cited 2024 Mar 11];161(1):189–98. Available from: https://pubmed.ncbi.nlm.nih.gov/3881386/spa
dc.relation.referencesBaek S, Lee EJ. PhoU: a multifaceted regulator in microbial signaling and homeostasis. Curr Opin Microbiol. 2024 Feb 1;77:102401.spa
dc.relation.referencesYang R, Li S, Li Y, Yan Y, Fang Y, Zou L, et al. Bactericidal Effect of Pseudomonas oryziphila sp. nov., a Novel Pseudomonas Species Against Xanthomonas oryzae Reduces Disease Severity of Bacterial Leaf Streak of Rice. Front Microbiol [Internet]. 2021 Nov 4 [cited 2024 May 13];12. Available from: /pmc/articles/PMC8600968/spa
dc.relation.referencesFlores-Encarnación M, Sánchez-Cuevas M, Ortiz-Gutiérrez F. Las PQQdeshidrogenasas. Un novedoso ejemplo de quinoproteínas bacterianas. Revista Latinoamericana de MICROBIOLOGÍA MICROBIOLOGÍA. 46:47–59.spa
dc.relation.referencesLudueña LM, Anzuay MS, Magallanes-Noguera C, Tonelli ML, Ibañez FJ, Angelini JG, et al. Effects of P limitation and molecules from peanut root exudates on pqqE gene expression and pqq promoter activity in the phosphate-solubilizing strain Serratia sp. S119. Res Microbiol. 2017 Oct 1;168(8):710–21.spa
dc.relation.referencesNaveed M, Sohail Y, Khalid N, Ahmed I, Mumtaz AS. Evaluation of Glucose Dehydrogenase and Pyrroloquinoline Quinine (pqq) Mutagenesis that Renders Functional Inadequacies in Host Plants. J Microbiol Biotechnol [Internet]. 2015 Aug 28 [cited 2024 May 13];25(8):1349–60. Available from: https://www.jmb.or.kr/journal/view.html?doi=10.4014/jmb.1501.01075spa
dc.relation.referencesYuan ZC, Zaheer R, Finan TM. Regulation and Properties of PstSCAB, a HighAffinity, High-Velocity Phosphate Transport System of Sinorhizobium meliloti. J Bacteriol [Internet]. 2006 Feb [cited 2024 May 13];188(3):1089. Available from: /pmc/articles/PMC1347321/spa
dc.relation.referencesHasegawa M, Kishino H. Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree. Mol Biol Evol. 1994 Jan;11(1):142–5.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/spa
dc.subjectBioinformáticaspa
dc.subjectMicroorganismos promotores de crecimiento vegetalspa
dc.subjectProteínas de Transporte de Fosfatospa
dc.subjectSolubilizadores de fosfatosspa
dc.subject.subjectenglishBioinformaticsspa
dc.subject.subjectenglishPlant growth promoting microorganismsspa
dc.subject.subjectenglishPhosphate transport proteinsspa
dc.subject.subjectenglishPhosphate solubilizersspa
dc.titleAnálisis in silico de genes relacionados con rutas enzimáticas para la solubilización de fosfatos de aislamientos de bacterias de suelos agrícolas del Eje Cafeterospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Pregradospa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
formato-autorizacion-repositorio.pdf
Tamaño:
278.17 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
TESIS MARIA MANUELA TORO VASCO.pdf
Tamaño:
3.22 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones