La Inteligencia Artificial aplicada en la Innovación para la Experiencia del Cliente

dc.contributor.advisorAlba, Miguel Antonio
dc.contributor.authorGrisales, Laura Vanessa
dc.contributor.authorOrtiz, Laura Camila
dc.coverage.spatialBogotáspa
dc.creator.emaillauraortizarte2023@gmail.comspa
dc.date.accessioned2025-04-21T13:18:52Z
dc.date.available2025-04-21T13:18:52Z
dc.date.created2025-04-12
dc.description.abstractEl objetivo de este artículo fue analizar cómo la inteligencia artificial (IA) se puede aplicar en la innovación para mejorar la experiencia del cliente en diversos sectores. Este trabajo parte del problema del creciente desafío que enfrentan las empresas para satisfacer las expectativas de los clientes en un entorno competitivo y digitalizado. Se buscó identificar herramientas y enfoques de IA que permitan personalizar la experiencia del cliente, optimizar los procesos de interacción y generar lealtad. Metodológicamente, se realizó una revisión bibliográfica de teorías relacionadas con la innovación tecnológica y el comportamiento del consumidor, además de normas internacionales como ISO 9001:2015 sobre gestión de calidad. Se recopilaron estudios de casos y se empleó un enfoque cualitativo para analizar el impacto de herramientas de IA, como chatbots, análisis predictivo y motores de recomendación, en la experiencia del cliente. Los resultados muestran que la implementación de la IA permite una interacción más eficiente y personalizada, mejorando los tiempos de respuesta y aumentando la satisfacción del cliente. Por ejemplo, empresas como Amazon han utilizado algoritmos de recomendación que han incrementado significativamente sus ventas. Se concluyó que, aunque la IA ofrece múltiples beneficios, su implementación debe ir acompañada de una estrategia ética y centrada en el cliente para maximizar resultados y minimizar riesgos como la invasión de privacidad.spa
dc.description.abstractenglishThe objective of this article was to analyze how artificial intelligence (AI) can be applied in innovation to improve customer experience across various sectors. This work addresses the growing challenge companies face in meeting customer expectations in a competitive and digitalized environment. The aim was to identify AI tools and approaches that allow for personalizing the customer experience, optimizing interaction processes, and building loyalty. Methodologically, a literature review was conducted of theories related to technological innovation and consumer behavior, as well as international standards such as ISO 9001:2015 on quality management. Case studies were compiled, and a qualitative approach was used to analyze the impact of AI tools, such as chatbots, predictive analytics, and recommendation engines, on customer experience. The results show that implementing AI enables more efficient and personalized interactions, improving response times and increasing customer satisfaction. For example, companies like Amazon have used recommendation algorithms that have significantly increased their sales. It was concluded that, although AI offers multiple benefits, its implementation must be accompanied by an ethical and customer-centric strategy to maximize results and minimize risks such as privacy invasion.spa
dc.description.sponsorshipUniversidad Libre -- Economía, Administración, Contaduría y Afines -- Negocios Internacionalesspa
dc.formatPDFspa
dc.identifier.urihttps://hdl.handle.net/10901/30983
dc.relation.referencesChen, H., Chiang, R. H., & Storey, V. C. (2021). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165-1188. https://doi.org/10.25300/MISQ/2012/36.4.03spa
dc.relation.referencesAbu Daqar, M. A. M., & Smoudy, A. K. A. (2019). The role of artificial intelligence on enhancing customer experience. International Review of Management and Marketing, 9(4), 23-31. https://doi.org/10.32479/irmm.8166 Accenture. (2021). The rise of AI in customer service operations. Recuperado de https://www.accenture.comspa
dc.relation.referencesChui, M., Manyika, J., & Miremadi, M. (2018). Where machines could replace humans—and where they can’t (yet). McKinsey Quarterly. https://www.mckinsey.com/featured-insights/artificial-intelligence/where-machines-could-replace-humans-and-where-they-cant-yetspa
dc.relation.referencesDavenport, T. H., & Kirby, J. (2016). Only Humans Need Apply: Winners and Losers in the Age of Smart Machines. Harper Business.spa
dc.relation.referencesDeloitte Insights. (2022). AI in customer service: Enhancing efficiency and experience. Recuperado de https://www2.deloitte.comspa
dc.relation.referencesGoodman, B., & Flaxman, S. (2017). European Union regulations on algorithmic decision-making and a “right to explanation”. AI Magazine, 38(3), 50-57. https://doi.org/10.1609/aimag.v38i3.2741spa
dc.relation.referencesHuang, M.-H., & Rust, R. T. (2020). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 48(1), 30-50. https://doi.org/10.1007/s11747-019-00696-0spa
dc.relation.referencesLemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69-96. https://doi.org/10.1509/jm.15.0420spa
dc.relation.referencesMcKinsey & Company. (2023). The state of personalization 2023: Winning with experience. Recuperado de https://www.mckinsey.comspa
dc.relation.referencesOliver, R. L. (2010). Satisfaction: A Behavioral Perspective on the Consumer (2nd ed.). Routledge. https://doi.org/10.4324/9781315700892spa
dc.relation.referencesPicard, R. W. (2003). Affective computing: Challenges. International Journal of Human-Computer Studies, 59(1-2), 55-64. https://doi.org/10.1016/S1071-5819(03)00052-1spa
dc.relation.referencesSalesforce. (2021). State of the connected customer: Fourth edition. Salesforce Research. https://www.salesforce.comspa
dc.relation.referencesSalesforce. (2022). State of the connected customer, 5th edition. Recuperado de https://www.salesforce.comspa
dc.relation.referencesTuzovic, S., & Paluch, S. (2018). Chatbots—A next generation of virtual personal assistants in customer service. In Proceedings of the International Conference on Information Systems (pp. 6-9).spa
dc.relation.referencesWest, S. M., & Allen, J. R. (2018). Ethically aligned design: A vision for prioritizing human well-being with autonomous and intelligent systems. IEEE. https://mktefa.ditrendia.es/blog/estadisticas-iaspa
dc.relation.referencesMcStay, A. (2018). Emotional AI: The Rise of Empathic Media. SAGE Publications.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/spa
dc.subjectInteligencia artificialspa
dc.subjectInnovaciónspa
dc.subjectExperiencia del clientespa
dc.subject.lembServicio al cliente - Control de calidadspa
dc.subject.lembInteligencia artificial - Aspectos socialesspa
dc.subject.subjectenglishArtificial intelligencespa
dc.subject.subjectenglishCustomer experiencespa
dc.titleLa Inteligencia Artificial aplicada en la Innovación para la Experiencia del Clientespa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Pregradospa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
INTELIGENCIA ARTIFICIAL APLICADA EN LA INNOVACION EN SERVICIO AL CLIENTE .pdf
Tamaño:
416.21 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Autorización para publicación.pdf
Tamaño:
1.95 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: