Incidencia de los principios éticos en el uso de la inteligencia artificial a nivel global.

dc.contributor.advisorVillamizar Estrada, Avilio
dc.contributor.authorSanclemente Capacho, Andres Camilo
dc.coverage.spatialCúcutaspa
dc.creator.emailandresc-sanclementec@unilibre.edu.cospa
dc.date.accessioned2025-01-23T22:11:54Z
dc.date.available2025-01-23T22:11:54Z
dc.date.created2025-01-22
dc.description.abstractEl artículo destaca la importancia de incorporar principios éticos en el desarrollo y uso de la inteligencia artificial (IA), considerando su creciente influencia en sectores clave como la salud, transporte y negocios. Aunque la IA aún no tiene conciencia humana, sus capacidades de automatización y procesamiento masivo de datos plantean desafíos éticos significativos, especialmente en temas de empleo, privacidad y justicia social. Estos desafíos requieren atención para evitar impactos negativos que afecten el bienestar de la sociedad y promuevan un uso equitativo de la tecnología. Para mitigar estos riesgos, la ética en IA se enfoca en principios como transparencia, seguridad de datos, autonomía, intencionalidad y responsabilidad, que buscan orientar la creación de sistemas imparciales y explicables. Sin embargo, problemas como la "caja negra" de algunos algoritmos y la presencia de sesgos en los datos de entrenamiento dificultan la confianza en estas tecnologías, ya que pueden perpetuar prejuicios sociales. Esto subraya la necesidad de mejorar los estándares éticos y asegurar que la IA actúe en beneficio de todos, eliminando sesgos y promoviendo decisiones justas. Gobiernos y grandes corporaciones también han comenzado a implementar marcos regulatorios, como los principios FEAT (justicia, ética, responsabilidad y transparencia), para supervisar el uso ético de la IA. Estudios de caso, como la identificación biométrica en India, resaltan tanto los beneficios como los riesgos de la IA, sugiriendo que para una IA ética se requiere regulación, educación y cooperación internacional, a fin de reducir la desigualdad y proteger los derechos humanos en un marco de gobernanza transparente.spa
dc.description.abstractenglishThe article highlights the importance of incorporating ethical principles in the development and use of artificial intelligence (AI), considering its growing influence in key sectors such as health, transportation, and business. Although AI does not yet have human consciousness, its capabilities in automation and massive data processing pose significant ethical challenges, especially in areas like employment, privacy, and social justice. These challenges require attention to prevent negative impacts that could affect society's well-being and promote an equitable use of technology. To mitigate these risks, AI ethics focuses on principles such as transparency, data security, autonomy, intentionality, and responsibility, aiming to guide the creation of impartial and explainable systems. However, issues like the "black box" of certain algorithms and the presence of biases in training data make it difficult to trust these technologies, as they may perpetuate social prejudices. This underscores the need to improve ethical standards and ensure that AI acts for the benefit of all, eliminating biases and promoting fair decisions. Governments and large corporations have also begun implementing regulatory frameworks, such as the FEAT principles (fairness, ethics, accountability, and transparency), to oversee the ethical use of AI. Case studies, such as biometric identification in India, highlight both the benefits and risks of AI, suggesting that an ethical AI requires regulation, education, and international cooperation to reduce inequality and protect human rights within a transparent governance framework.spa
dc.description.sponsorshipUniversidad Libre -Ingenierías- Ingeniería en tecnologías de la investigación y las comunicacionesspa
dc.formatPDFspa
dc.identifier.urihttps://hdl.handle.net/10901/30483
dc.relation.referencesAnderson, M., & Anderson, S. L. (2007). Machine ethics: Creating an ethical intelligent agent. AI Magazine, 28(4), 15–26.spa
dc.relation.referencesBarclay, I., Preece, A., Taylor, I., & Verma, D. (2021). Towards traceability in data ecosystems using a bill of materials model. CEUR Workshop Proceedings, 2975.spa
dc.relation.referencesBender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? FAccT 2021 - Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610–623. https://doi.org/10.1145/3442188.3445922spa
dc.relation.referencesBinns, R., Van Kleek, M., Veale, M., Lyngs, U., Zhao, J., & Shadbolt, N. (2018). “It’s reducing a human being to a percentage”; perceptions of justice in algorithmic decisions. Conference on Human Factors in Computing Systems - Proceedings, 2018-April. https://doi.org/10.1145/3173574.3173951spa
dc.relation.referencesBostrom, N., & Yudkowsky, E. (2014). The ethics of artificial intelligence. In The Cambridge handbook of artificial intelligence (pp. 316-334). Cambridge Press. doi:10.1017/CBO9781139046855.020spa
dc.relation.referencesBossmann, J. (2016). Top 9 ethical issues in artificial intelligence. World Economic Forum. Retrieved from https://www.weforum.org/ethical-issues-in-AIspa
dc.relation.referencesBradley, T. (2017). Facebook AI Creates Its Own Language In Creepy Preview of Ourspa
dc.relation.referencesBrundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P., Garfinkel, B., Dafoe, A., Scharre, P., Zeitzoff, T., Filar, B., Anderson, H., Roff, H., Allen, G. C., Steinhardt, J., Flynn, C., hÉigeartaigh, S. Ó., Beard, S., Belfield, H., Farquhar, S., … Amodei, D. (2018). The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation. http://arxiv.org/abs/1802.07228spa
dc.relation.referencesBryson, J., & Winfield, A. (2017). Standardizing Ethical Design for Artificial Intelligence and Autonomous Systems. Computer, 50(5), 116–119. https://doi.org/10.1109/MC.2017.154spa
dc.relation.referencesChoudhuri, R., Liu, D., Steinmacher, I., Gerosa, M., & Sarma, A. (2024). How Far Are We? The Triumphs and Trials of Generative AI in Learning Software Engineering. Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, 1–13. https://doi.org/10.1145/3597503.3639201spa
dc.relation.referencesCramer, H., Reddy, S., Bouyer, R. T., Garcia-Gathright, J., & Springer, A. (2019). Translation, tracks & Data: An algorithmic bias effort in practice. Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3290607.3299057spa
dc.relation.referencesDavidson, T., Bhattacharya, D., & Weber, I. (2019). Racial Bias in Hate Speech and Abusive Language Detection Datasets. 25–35. https://doi.org/10.18653/v1/w19-3504spa
dc.relation.referencesDiakopoulos, N. (2016). Accountability in algorithmic decision making. Communications of the ACM, 59(2), 56–62. https://doi.org/10.1145/2844110spa
dc.relation.referencesDíaz, M., Johnson, I., Lazar, A., Piper, A. M., & Gergle, D. (2018). Addressing age-related bias in sentiment analysis. Conference on Human Factors in Computing Systems - Proceedings, 2018-April. https://doi.org/10.1145/3173574.3173986spa
dc.relation.referencesDawson, D., Schleiger, E., Horton, J., McLaughlin, J., Robinson, C., Quezada, G., . . . Hajkowicz, S. (2019). Artificial Intelligence: Australia’s Ethics Framework. Data61 CSIRO, Australia.spa
dc.relation.referencesEuropean Commission. (2019). Ethics guidelines for trustworthy AI. Retrieved from https://ec.europa.eu/digital- single-market/en/news/ethics-guidelines-trustworthy-aispa
dc.relation.referencesFloridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., & Vayena, E. et al. (2018). AI4People—an ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines, 28(4), 689–707. doi:10.1007/s11023-018-9482-5 PMID:30930541spa
dc.relation.referencesFuture of Life Institute. (2017). Asilomar AI Principles. Retrieved from https://futureoflife.org/ai-principles/?cn-reloaded=1spa
dc.relation.referencesHagerty, A., & Rubinov, I. (2019). Global AI Ethics: A Review of the Social Impacts and Ethical Implications of Artificial Intelligence. http://arxiv.org/abs/1907.07892spa
dc.relation.referencesHanna, M. (2019). We don’t need more guidelines or frameworks on ethical AI use. It’s time for regulatory action. Brink the Edge of Risk. Retrieved from https://www.brinknews.com/we-dont-need-more-guidelines-or-frameworks-on-ethical-ai-use-its-time-for-regulatory-action/Haga clic o pulse aquí para escribir texto.spa
dc.relation.referencesHamidi, F., Scheuerman, M. K., & Branham, S. M. (2018). Gender Recognition or Gender reductionism? The socialimplications of Automatic Gender Recognition systems. Conference on Human Factors in Computing Systems - Proceedings, 2018-April. https://doi.org/10.1145/3173574.3173582spa
dc.relation.referencesHolstein, K., Vaughan, J. W., Daumé, H., Dudík, M., & Wallach, H. (2019). Improving fairness in machine learning systems: What do industry practitioners need? Conference on Human Factors in Computing Systems - Proceedings, 16. https://doi.org/10.1145/3290605.3300830spa
dc.relation.referencesIAPP. (2018). White Paper -- Building Ethics into Privacy Frameworks for Big Data and AI. Retrieved from https://iapp.org/resources/article/building-ethics-into-privacy-frameworks-for-big-data-and-ai/spa
dc.relation.referencesIEEE. (2019). Ethically aligned Design. Retrieved from https://ethicsinaction.ieee.org/spa
dc.relation.referencesKoolen, C., & van Cranenburgh, A. (2017). These are not the Stereotypes you are looking For: Bias and Fairness in Authorial Gender Attribution. Proceedings of the First ACL Workshop on Ethics in Natural Language Processing (pp. 12-22). Academic Press. doi:10.18653/v1/W17-1602spa
dc.relation.referencesLarson, B.N. (2017). Gender as a variable in natural-language processing: Ethical considerations.spa
dc.relation.referencesMarkkula Center for Applied Ethics. (2015). A framework for ethical decision making. Santa Clara University. Retrieved from https://www.scu.edu/ethics/ethics-resources/ethical-decision-making/a-framework-for-ethical- decision-making/spa
dc.relation.referencesPotential Future. Forbes. Retrieved from https://www.forbes.com/sites/tonybradley/2017/0 7/31/facebook-ai-creates-its-own-language-in-creepy-preview-of-our-potential-future/#45c65554292cspa
dc.relation.referencesRabie, A., & Hassanien, M. (2023). The impact of Artificial Intelligence on the Socioeconomic factors in the UAE. 2023 6th Artificial Intelligence and Cloud Computing Conference (AICCC), 114–125. https://doi.org/10.1145/3639592.3639609spa
dc.relation.referencesRyan, M. (2020). In AI We Trust: Ethics, Artificial Intelligence, and Reliability. Science and Engineering Ethics, 26(5), 2749–2767. https://doi.org/10.1007/S11948-020-00228-Y/TABLES/1spa
dc.relation.referencesShneiderman, B. (2020). Bridging the Gap Between Ethics and Practice. ACM Transactions on Interactive Intelligent Systems (TiiS), 10(4), 26. https://doi.org/10.1145/3419764spa
dc.relation.referencesSiau, K., & Wang, W. (2020). Artificial Intelligence (AI) Ethics: Ethics of AI and Ethical AI. https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/JDM.2020040105, 31(2), 74–87. https://doi.org/10.4018/JDM.2020040105spa
dc.relation.referencesSiau, K., Xi, Y., & Zou, C. (2019). Industry 4.0: Challenges and Opportunities in Different Countries. Cutter Business Technology Journal., 32(6), 6–14.spa
dc.relation.referencesSchwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green AI. Communications of the ACM, 63(12), 54–63. https://doi.org/10.1145/3381831spa
dc.relation.referencesSullins, J. P. (2011). When is a robot a moral agent. Machine ethics, 151-160.spa
dc.relation.referencesThe Public Voice. (2018). Universal Guidelines for Artificial Intelligence. Retrieved from https://thepublicvoice. org/ai-universal-guidelinesspa
dc.relation.referencesTimmermans, J., Stahl, B. C., Ikonen, V., & Bozdag, E. (2010). The ethics of cloud computing: A conceptual review. Proceedings of the IEEE Second International Conference Cloud Computing Technology and Science (pp. 614-620). IEEE Press. doi:10.1109/CloudCom.2010.59spa
dc.relation.referencesUNESCO. (2017). Report of World Commission on the Ethics of Scientific Knowledge and Technology on Robotics Ethics. Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000253952spa
dc.relation.referencesWang, W., & Siau, K. (2018). Ethical and moral issue with AI – a case study on healthcare robots. AMCIS 2019 proceedings. Academic Press.spa
dc.relation.referencesWang, W., & Siau, K. (2019a). Artificial Intelligence, Machine Learning, Automation, Robotics, Future of Work and Future of Humanity: A Review and Research Agenda. Journal of Database Management, 30(1), 61–79spa
dc.relation.referencesWang, W., & Siau, K. (2019b). Industry 4.0: Ethical and moral Predicaments. Cutter Business Technology Journal., 32(6), 36–45.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/spa
dc.subjectInteligencia Artificial (IA)spa
dc.subjectPrincipios éticosspa
dc.subjectDerechos humanosspa
dc.subjectEstándares éticosspa
dc.subjectResponsabilidadspa
dc.subjectTransparenciaspa
dc.subjectRegulaciónspa
dc.subjecteducaciónspa
dc.subject.lembInteligencia artificialspa
dc.subject.subjectenglishArtificial Intelligence (AI)spa
dc.subject.subjectenglishEthical principlesspa
dc.subject.subjectenglishHuman rightsspa
dc.subject.subjectenglishEthical standardsspa
dc.subject.subjectenglishResponsibilityspa
dc.subject.subjectenglishTransparencyspa
dc.subject.subjectenglishRegulationspa
dc.subject.subjectenglishEducationspa
dc.titleIncidencia de los principios éticos en el uso de la inteligencia artificial a nivel global.spa
dc.title.alternativeImpact of ethical principles in the use of artificial intelligence at a global levelspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Pregradospa

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
FORMATO_ARTICULO_FINAL_INVESTIGACION_Andres_Camilo_Sanclemente.pdf
Tamaño:
331.66 KB
Formato:
Adobe Portable Document Format
Descripción:
Articulo Final
Cargando...
Miniatura
Nombre:
FORMATO INSTITUCIONAL RESUMEN.pdf
Tamaño:
99.71 KB
Formato:
Adobe Portable Document Format
Descripción:
Resumen
Cargando...
Miniatura
Nombre:
RESOLUCIÓN.pdf
Tamaño:
771.13 KB
Formato:
Adobe Portable Document Format
Descripción:
Resolución
Cargando...
Miniatura
Nombre:
Formato-autorizacion-para-la-publicacion-digital-de-obras-en-el-repositorio-institucional,,,,,,.pdf
Tamaño:
605.59 KB
Formato:
Adobe Portable Document Format
Descripción:
Formato-autorizacion-para-la-publicacion-digital-de-obras-en-el-repositorio-institucional

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: