Uso del aprendizaje de máquina en diferentes sectores industriales

dc.contributor.advisorVillamizar Estrada, Avilio
dc.contributor.authorDuarte Vargas, Ciro Adrian
dc.contributor.authorCastillo Marquez, David
dc.coverage.spatialCúcutaspa
dc.creator.emailciroadrian8@gmail.comspa
dc.creator.emaildavid-castillom@unilibre.edu.cospa
dc.date.accessioned2024-10-15T15:36:44Z
dc.date.available2024-10-15T15:36:44Z
dc.date.created2024-10-09
dc.description.abstractEn la actualidad, la confiabilidad y eficiencia de las empresas están estrechamente relacionadas con su capacidad para resolver problemas de manera efectiva. El aprendizaje automático (Machine Learning) ha emergido como una herramienta clave para lograr esta eficiencia, facilitando la optimización de procesos en una variedad de sectores industriales. El artículo explora cómo el aprendizaje automático está revolucionando múltiples industrias al mejorar la automatización de tareas, el análisis de datos y la toma de decisiones. Al integrar inteligencia artificial (IA) y redes neuronales artificiales (Artificial Neural Networks), el aprendizaje automático está contribuyendo significativamente a la creación de procesos más eficientes y adaptativos, avanzando así hacia la Industria 4.0. Además, el artículo presenta varios casos de éxito donde el aprendizaje automático ha sido esencial para alcanzar mejoras destacadas en diferentes sectores. Estos ejemplos demuestran el impacto positivo de esta tecnología en la optimización de operaciones y en la capacidad de las empresas para adaptarse y prosperar en un entorno cada vez más digitalizado.spa
dc.description.abstractenglishCurrently, the reliability and efficiency of companies are increasingly tied to their ability to solve problems effectively within their respective sectors. Machine Learning has emerged as a crucial tool to achieve this efficiency, driving process optimization across various industrial sectors. The article highlights how machine learning is transforming multiple industries by enhancing task automation, data analysis, and decision-making. By leveraging artificial intelligence (AI) and artificial neural networks, machine learning facilitates the creation of more efficient and adaptive processes, significantly contributing to the evolution towards Industry 4.0. The article also presents several success stories where machine learning has been fundamental in achieving notable improvements in different sectors. These examples illustrate the positive impact of this technology on optimizing operations and enhancing the ability of companies to adapt and thrive in an increasingly digitalized environment.spa
dc.description.sponsorshipUniversidad Libre - Facultad de Ingenierías - Ingeniería en Tecnologías de la Información y las Comunicacionesspa
dc.formatPDFspa
dc.identifier.urihttps://hdl.handle.net/10901/30203
dc.relation.referencesAbadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., … Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. http://arxiv.org/abs/1605.08695spa
dc.relation.referencesAbraham, A. (2020). Handbook of measuring system design. Wiley. softcomputing.netspa
dc.relation.referencesAlamro, H., Mtouaa, W., Aljameel, S., Salama, A. S., Hamza, M. A., & Othman, A. Y. (2023). Automated Android Malware Detection Using Optimal Ensemble Learning Approach for Cybersecurity. IEEE Access, 11, 72509–72517. https://doi.org/10.1109/ACCESS.2023.3294263spa
dc.relation.referencesAli Abdulalem, S. H. O. T. A. E. E. (2022). MDPI Financial Fraud Detection Based on Machine Learning A. https://www.mdpi.com/2076-3417/12/19/9637spa
dc.relation.referencesAljabri, M., Altamimi, H. S., Albelali, S. A., Al-Harbi, M., Alhuraib, H. T., Alotaibi, N. K., Alahmadi, A. A., AlHaidari, F., Mohammad, R. M. A., & Salah, K. (2022). Detecting Malicious URLs Using Machine Learning Techniques: Review and Research Directions. IEEE Access, 10, 121395–121417. https://doi.org/10.1109/ACCESS.2022.3222307spa
dc.relation.referencesAracena, C., Villena, F., Arias, F., & Dunstan, J. (2022). Applications of machine learning in healthcare. Revista Medica Clinica Las Condes, 33(6), 568–575. https://doi.org/10.1016/j.rmclc.2022.10.001spa
dc.relation.referencesBasáez, E., & Mora, J. (2021). 556 I N F O R M A C I Ó N D E L A R T Í C U L O Salud e inteligencia artificial: ¿cómo hemos evolucionado? Artificial intelligence in health: where are we in 2022? https://doi.org/spa
dc.relation.referencesBhuiyan, M. R., & Wree, P. (2023). Animal Behavior for Chicken Identification and Monitoring the Health Condition Using Computer Vision: A Systematic Review. IEEE Access, 11, 126601–126610. https://doi.org/10.1109/access.2023.3331092spa
dc.relation.referencesCastrillon, S. O., Maria, L., Marín, G., Horacio, H., Villegas, J., César, C., & Escobar, P. (2021). Machine learning aplicado en la clasificación y predicción de la depresión: Una revisión sistemática.spa
dc.relation.referencesCortés, Y., Berenice, C., Landeta, I., Manuel, J., Chacón, B., Guadalupe, J., Pereyra, A., & Osorio, L. (2017). PDF generado a partir de XML-JATS4R por Redalyc Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto El Entorno de la Industria 4.0: Implicaciones y Perspectivas Futuras. https://www.redalyc.org/articulo.oa?id=94454631006spa
dc.relation.referencesDonepudi, P. K. (2019). Automation and Machine Learning in Transforming the Financial Industry. Asian Business Review, 9. https://doi.org/10.18034/abr.v9i3.494spa
dc.relation.referencesElbasi, E., Mostafa, N., Alarnaout, Z., Zreikat, A. I., Cina, E., Varghese, G., Shdefat, A., Topcu, A. E., Abdelbaki, W., Mathew, S., & Zaki, C. (2023). Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review. In IEEE Access (Vol. 11, pp. 171–202). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2022.3232485spa
dc.relation.referencesGonzález-García, C. (2018). En qué consiste el aprendizaje automático (machine learning) y qué está aportando a la Neurociencia Cognitiva. Cienc. Cogn, 12(2), 48-50.spa
dc.relation.referencesGutiérrez, C., & López, M. (2022). Health in the digital age. Revista Medica Clinica Las Condes, 33(6), 562–567. https://doi.org/10.1016/j.rmclc.2022.11.001spa
dc.relation.referencesHalbouni, A., Gunawan, T. S., Habaebi, M. H., Halbouni, M., Kartiwi, M., & Ahmad, R. (2022). Machine Learning and Deep Learning Approaches for CyberSecurity: A Review. In IEEE Access (Vol. 10, pp. 19572–19585). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2022.3151248spa
dc.relation.referencesJaniesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. https://doi.org/10.1007/s12525-021-00475-2/Publishedspa
dc.relation.referencesKumar, V., Saheb, S. S., Preeti, Ghayas, A., Kumari, S., Chandel, J. K., Pandey, S. K., & Kumar, S. (2023). AI-Based Hybrid Models for Predicting Loan Risk in the Banking Sector. Big Data Mining and Analytics, 6(4), 478–490. https://doi.org/10.26599/BDMA.2022.9020037spa
dc.relation.referencesLeo, M., Sharma, S., & Maddulety, K. (2019). Machine learning in banking risk management: A literature review. Risks, 7(1). https://doi.org/10.3390/risks7010029spa
dc.relation.referencesMasna, N. V. R., Chen, C., Mandal, S., & Bhunia, S. (2019). Robust Authentication of Consumables With Extrinsic Tags and Chemical Fingerprinting. IEEE Access, 7, 14396–14409. https://doi.org/10.1109/ACCESS.2019.2893518spa
dc.relation.referencesMet, I., Erkoc, A., & Seker, S. E. (2023). Performance, Efficiency, and Target Setting for Bank Branches: Time Series With Automated Machine Learning. IEEE Access, 11, 1000–1010. https://doi.org/10.1109/ACCESS.2022.3233529spa
dc.relation.referencesNetSec. (2024, 28 mayo). Microsoft 365 Email Spam Filtering. NetSec.News. https://www.netsec.news/microsoft-365-email-spam-filtering/spa
dc.relation.referencesOrdóñez, H., Cobos, C., & Bucheli, V. (2020). Modelo de machine learning para la predicción de las tendencias de hurto en Colombia Machine learning model for predicting theft trends in Colombia. https://www.proquest.com/openview/fb8bfe36673b48be2d035ee8a035c307/1?pq-origsite=gscholar&cbl=1006393spa
dc.relation.referencesPanch, T., Szolovits, P., & Atun, R. (2018). Artificial intelligence, machine learning and health systems. Journal of global health, 8(2).spa
dc.relation.referencesPayPal. (2023). Harnessing the power of machine learning for payment fraud detection. PayPal. https://paypal.com/us/brc/article/payment-fraud-detection-machine-learningspa
dc.relation.referencesPedrero Victor, Cortez Erick, Grandon Katiuska, & Ureta Joaquin. (2021). Generalidades del Machine Learning y su aplicación en la gestión sanitaria en Servicios de Urgencia. Rev Med Chile, 248–254. https://www.scielo.cl/scielo.php?pid=S0034-98872021000200248&script=sci_arttextspa
dc.relation.referencesPineda, J. M. (2022). Predictive models in health based on machine learning. Revista Medica Clinica Las Condes, 33(6), 583–590. https://doi.org/10.1016/j.rmclc.2022.11.002spa
dc.relation.referencesRashid, M., Bari, B. S., Yusup, Y., Kamaruddin, M. A., & Khan, N. (2021). A Comprehensive Review of Crop Yield Prediction Using Machine Learning Approaches with Special Emphasis on Palm Oil Yield Prediction. In IEEE Access (Vol. 9, pp. 63406–63439). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2021.3075159spa
dc.relation.referencesRosero-Montalvo, P. D., Gordillo-Gordillo, C. A., & Hernandez, W. (2023). Smart Farming Robot for Detecting Environmental Conditions in a Greenhouse. IEEE Access, 11, 57843–57853. https://doi.org/10.1109/ACCESS.2023.3283986spa
dc.relation.referencesSandoval, L. (2018). ENERO-DICIEMBRE 2018 Derechos Reservados • Escuela Especializada en Ingeniería ITCA-FEPADE (Vol. 11). http://redicces.org.sv/jspui/handle/10972/3626spa
dc.relation.referencesShu Yee, O., Sagadevan, S., & Hashimah Ahamed Hassain Malim, N. (2018). Credit Card Fraud Detection Using Machine Learning As Data Mining Technique. 10. https://jtec.utem.edu.my/jtec/article/view/3571spa
dc.relation.referencesSiemens Healthineers. (2021) Aritificial Intelligence in radiology. https://www.siemens-healthineers.com/medical-imaging/digital-transformation-of-radiology/ai-in-radiologyspa
dc.relation.referencesWijaya, D. R., Syarwan, N. F., Nugraha, M. A., Ananda, D., Fahrudin, T., & Handayani, R. (2023). Seafood Quality Detection Using Electronic Nose and Machine Learning Algorithms With Hyperparameter Optimization. IEEE Access, 11, 62484–62495. https://doi.org/10.1109/ACCESS.2023.3286980spa
dc.relation.referencesXin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao, M., Hou, H., & Wang, C. (2018). Machine Learning and Deep Learning Methods for Cybersecurity. IEEE Access, 6, 35365–35381. https://doi.org/10.1109/ACCESS.2018.2836950spa
dc.relation.referencesZaytsev, A. (2023, octubre 28). Case study: How Cargill leverages AI to transform its global operations. AIX | AI Expert Network; AIX. https://aiexpert.network/case-study-how-cargill-leverages-ai-to-transform-its-global-operations/spa
dc.relation.referencesZhang, S., Xie, X., & Xu, Y. (2020). A Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity. IEEE Access, 8, 128250–128263. https://doi.org/10.1109/ACCESS.2020.3008433spa
dc.relation.referencesZhao, G., Jia, P., Huang, C., Zhou, A., & Fang, Y. (2020). A Machine Learning Based Framework for Identifying Influential Nodes in Complex Networks. IEEE Access, 8, 65462–65471. https://doi.org/10.1109/ACCESS.2020.2984286spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/spa
dc.subjectredes neuronales artificialesspa
dc.subjectaprendizaje profundospa
dc.subjectinteligencia artificialspa
dc.subjectaprendizaje automáticospa
dc.subjectindustria 4.0spa
dc.subject.lembIndustriaspa
dc.subject.lembMachine Learningspa
dc.subject.subjectenglishartificial neural networkspa
dc.subject.subjectenglishdeep learningspa
dc.subject.subjectenglishartificial intelligencespa
dc.subject.subjectenglishmachine learningspa
dc.subject.subjectenglishindustry 4.0spa
dc.titleUso del aprendizaje de máquina en diferentes sectores industrialesspa
dc.title.alternativeUse of Machine Learning in different industrial sectorsspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Pregradospa

Archivos

Bloque original

Mostrando 1 - 5 de 5
Cargando...
Miniatura
Nombre:
Uso del aprendizaje de máquina en diferentes sectores industriales.pdf
Tamaño:
408.85 KB
Formato:
Adobe Portable Document Format
Descripción:
Articulo
Cargando...
Miniatura
Nombre:
RESUMEN.pdf
Tamaño:
58.17 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Resolucion David.pdf
Tamaño:
733.34 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Resolución Ciro.pdf
Tamaño:
788.57 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Autorización repositorio.pdf
Tamaño:
2.28 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: