Uso del aprendizaje de máquina en diferentes sectores industriales
| dc.contributor.advisor | Villamizar Estrada, Avilio | |
| dc.contributor.author | Duarte Vargas, Ciro Adrian | |
| dc.contributor.author | Castillo Marquez, David | |
| dc.coverage.spatial | Cúcuta | spa |
| dc.creator.email | ciroadrian8@gmail.com | spa |
| dc.creator.email | david-castillom@unilibre.edu.co | spa |
| dc.date.accessioned | 2024-10-15T15:36:44Z | |
| dc.date.available | 2024-10-15T15:36:44Z | |
| dc.date.created | 2024-10-09 | |
| dc.description.abstract | En la actualidad, la confiabilidad y eficiencia de las empresas están estrechamente relacionadas con su capacidad para resolver problemas de manera efectiva. El aprendizaje automático (Machine Learning) ha emergido como una herramienta clave para lograr esta eficiencia, facilitando la optimización de procesos en una variedad de sectores industriales. El artículo explora cómo el aprendizaje automático está revolucionando múltiples industrias al mejorar la automatización de tareas, el análisis de datos y la toma de decisiones. Al integrar inteligencia artificial (IA) y redes neuronales artificiales (Artificial Neural Networks), el aprendizaje automático está contribuyendo significativamente a la creación de procesos más eficientes y adaptativos, avanzando así hacia la Industria 4.0. Además, el artículo presenta varios casos de éxito donde el aprendizaje automático ha sido esencial para alcanzar mejoras destacadas en diferentes sectores. Estos ejemplos demuestran el impacto positivo de esta tecnología en la optimización de operaciones y en la capacidad de las empresas para adaptarse y prosperar en un entorno cada vez más digitalizado. | spa |
| dc.description.abstractenglish | Currently, the reliability and efficiency of companies are increasingly tied to their ability to solve problems effectively within their respective sectors. Machine Learning has emerged as a crucial tool to achieve this efficiency, driving process optimization across various industrial sectors. The article highlights how machine learning is transforming multiple industries by enhancing task automation, data analysis, and decision-making. By leveraging artificial intelligence (AI) and artificial neural networks, machine learning facilitates the creation of more efficient and adaptive processes, significantly contributing to the evolution towards Industry 4.0. The article also presents several success stories where machine learning has been fundamental in achieving notable improvements in different sectors. These examples illustrate the positive impact of this technology on optimizing operations and enhancing the ability of companies to adapt and thrive in an increasingly digitalized environment. | spa |
| dc.description.sponsorship | Universidad Libre - Facultad de Ingenierías - Ingeniería en Tecnologías de la Información y las Comunicaciones | spa |
| dc.format | spa | |
| dc.identifier.uri | https://hdl.handle.net/10901/30203 | |
| dc.relation.references | Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., … Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. http://arxiv.org/abs/1605.08695 | spa |
| dc.relation.references | Abraham, A. (2020). Handbook of measuring system design. Wiley. softcomputing.net | spa |
| dc.relation.references | Alamro, H., Mtouaa, W., Aljameel, S., Salama, A. S., Hamza, M. A., & Othman, A. Y. (2023). Automated Android Malware Detection Using Optimal Ensemble Learning Approach for Cybersecurity. IEEE Access, 11, 72509–72517. https://doi.org/10.1109/ACCESS.2023.3294263 | spa |
| dc.relation.references | Ali Abdulalem, S. H. O. T. A. E. E. (2022). MDPI Financial Fraud Detection Based on Machine Learning A. https://www.mdpi.com/2076-3417/12/19/9637 | spa |
| dc.relation.references | Aljabri, M., Altamimi, H. S., Albelali, S. A., Al-Harbi, M., Alhuraib, H. T., Alotaibi, N. K., Alahmadi, A. A., AlHaidari, F., Mohammad, R. M. A., & Salah, K. (2022). Detecting Malicious URLs Using Machine Learning Techniques: Review and Research Directions. IEEE Access, 10, 121395–121417. https://doi.org/10.1109/ACCESS.2022.3222307 | spa |
| dc.relation.references | Aracena, C., Villena, F., Arias, F., & Dunstan, J. (2022). Applications of machine learning in healthcare. Revista Medica Clinica Las Condes, 33(6), 568–575. https://doi.org/10.1016/j.rmclc.2022.10.001 | spa |
| dc.relation.references | Basáez, E., & Mora, J. (2021). 556 I N F O R M A C I Ó N D E L A R T Í C U L O Salud e inteligencia artificial: ¿cómo hemos evolucionado? Artificial intelligence in health: where are we in 2022? https://doi.org/ | spa |
| dc.relation.references | Bhuiyan, M. R., & Wree, P. (2023). Animal Behavior for Chicken Identification and Monitoring the Health Condition Using Computer Vision: A Systematic Review. IEEE Access, 11, 126601–126610. https://doi.org/10.1109/access.2023.3331092 | spa |
| dc.relation.references | Castrillon, S. O., Maria, L., Marín, G., Horacio, H., Villegas, J., César, C., & Escobar, P. (2021). Machine learning aplicado en la clasificación y predicción de la depresión: Una revisión sistemática. | spa |
| dc.relation.references | Cortés, Y., Berenice, C., Landeta, I., Manuel, J., Chacón, B., Guadalupe, J., Pereyra, A., & Osorio, L. (2017). PDF generado a partir de XML-JATS4R por Redalyc Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto El Entorno de la Industria 4.0: Implicaciones y Perspectivas Futuras. https://www.redalyc.org/articulo.oa?id=94454631006 | spa |
| dc.relation.references | Donepudi, P. K. (2019). Automation and Machine Learning in Transforming the Financial Industry. Asian Business Review, 9. https://doi.org/10.18034/abr.v9i3.494 | spa |
| dc.relation.references | Elbasi, E., Mostafa, N., Alarnaout, Z., Zreikat, A. I., Cina, E., Varghese, G., Shdefat, A., Topcu, A. E., Abdelbaki, W., Mathew, S., & Zaki, C. (2023). Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review. In IEEE Access (Vol. 11, pp. 171–202). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2022.3232485 | spa |
| dc.relation.references | González-García, C. (2018). En qué consiste el aprendizaje automático (machine learning) y qué está aportando a la Neurociencia Cognitiva. Cienc. Cogn, 12(2), 48-50. | spa |
| dc.relation.references | Gutiérrez, C., & López, M. (2022). Health in the digital age. Revista Medica Clinica Las Condes, 33(6), 562–567. https://doi.org/10.1016/j.rmclc.2022.11.001 | spa |
| dc.relation.references | Halbouni, A., Gunawan, T. S., Habaebi, M. H., Halbouni, M., Kartiwi, M., & Ahmad, R. (2022). Machine Learning and Deep Learning Approaches for CyberSecurity: A Review. In IEEE Access (Vol. 10, pp. 19572–19585). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2022.3151248 | spa |
| dc.relation.references | Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. https://doi.org/10.1007/s12525-021-00475-2/Published | spa |
| dc.relation.references | Kumar, V., Saheb, S. S., Preeti, Ghayas, A., Kumari, S., Chandel, J. K., Pandey, S. K., & Kumar, S. (2023). AI-Based Hybrid Models for Predicting Loan Risk in the Banking Sector. Big Data Mining and Analytics, 6(4), 478–490. https://doi.org/10.26599/BDMA.2022.9020037 | spa |
| dc.relation.references | Leo, M., Sharma, S., & Maddulety, K. (2019). Machine learning in banking risk management: A literature review. Risks, 7(1). https://doi.org/10.3390/risks7010029 | spa |
| dc.relation.references | Masna, N. V. R., Chen, C., Mandal, S., & Bhunia, S. (2019). Robust Authentication of Consumables With Extrinsic Tags and Chemical Fingerprinting. IEEE Access, 7, 14396–14409. https://doi.org/10.1109/ACCESS.2019.2893518 | spa |
| dc.relation.references | Met, I., Erkoc, A., & Seker, S. E. (2023). Performance, Efficiency, and Target Setting for Bank Branches: Time Series With Automated Machine Learning. IEEE Access, 11, 1000–1010. https://doi.org/10.1109/ACCESS.2022.3233529 | spa |
| dc.relation.references | NetSec. (2024, 28 mayo). Microsoft 365 Email Spam Filtering. NetSec.News. https://www.netsec.news/microsoft-365-email-spam-filtering/ | spa |
| dc.relation.references | Ordóñez, H., Cobos, C., & Bucheli, V. (2020). Modelo de machine learning para la predicción de las tendencias de hurto en Colombia Machine learning model for predicting theft trends in Colombia. https://www.proquest.com/openview/fb8bfe36673b48be2d035ee8a035c307/1?pq-origsite=gscholar&cbl=1006393 | spa |
| dc.relation.references | Panch, T., Szolovits, P., & Atun, R. (2018). Artificial intelligence, machine learning and health systems. Journal of global health, 8(2). | spa |
| dc.relation.references | PayPal. (2023). Harnessing the power of machine learning for payment fraud detection. PayPal. https://paypal.com/us/brc/article/payment-fraud-detection-machine-learning | spa |
| dc.relation.references | Pedrero Victor, Cortez Erick, Grandon Katiuska, & Ureta Joaquin. (2021). Generalidades del Machine Learning y su aplicación en la gestión sanitaria en Servicios de Urgencia. Rev Med Chile, 248–254. https://www.scielo.cl/scielo.php?pid=S0034-98872021000200248&script=sci_arttext | spa |
| dc.relation.references | Pineda, J. M. (2022). Predictive models in health based on machine learning. Revista Medica Clinica Las Condes, 33(6), 583–590. https://doi.org/10.1016/j.rmclc.2022.11.002 | spa |
| dc.relation.references | Rashid, M., Bari, B. S., Yusup, Y., Kamaruddin, M. A., & Khan, N. (2021). A Comprehensive Review of Crop Yield Prediction Using Machine Learning Approaches with Special Emphasis on Palm Oil Yield Prediction. In IEEE Access (Vol. 9, pp. 63406–63439). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2021.3075159 | spa |
| dc.relation.references | Rosero-Montalvo, P. D., Gordillo-Gordillo, C. A., & Hernandez, W. (2023). Smart Farming Robot for Detecting Environmental Conditions in a Greenhouse. IEEE Access, 11, 57843–57853. https://doi.org/10.1109/ACCESS.2023.3283986 | spa |
| dc.relation.references | Sandoval, L. (2018). ENERO-DICIEMBRE 2018 Derechos Reservados • Escuela Especializada en Ingeniería ITCA-FEPADE (Vol. 11). http://redicces.org.sv/jspui/handle/10972/3626 | spa |
| dc.relation.references | Shu Yee, O., Sagadevan, S., & Hashimah Ahamed Hassain Malim, N. (2018). Credit Card Fraud Detection Using Machine Learning As Data Mining Technique. 10. https://jtec.utem.edu.my/jtec/article/view/3571 | spa |
| dc.relation.references | Siemens Healthineers. (2021) Aritificial Intelligence in radiology. https://www.siemens-healthineers.com/medical-imaging/digital-transformation-of-radiology/ai-in-radiology | spa |
| dc.relation.references | Wijaya, D. R., Syarwan, N. F., Nugraha, M. A., Ananda, D., Fahrudin, T., & Handayani, R. (2023). Seafood Quality Detection Using Electronic Nose and Machine Learning Algorithms With Hyperparameter Optimization. IEEE Access, 11, 62484–62495. https://doi.org/10.1109/ACCESS.2023.3286980 | spa |
| dc.relation.references | Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao, M., Hou, H., & Wang, C. (2018). Machine Learning and Deep Learning Methods for Cybersecurity. IEEE Access, 6, 35365–35381. https://doi.org/10.1109/ACCESS.2018.2836950 | spa |
| dc.relation.references | Zaytsev, A. (2023, octubre 28). Case study: How Cargill leverages AI to transform its global operations. AIX | AI Expert Network; AIX. https://aiexpert.network/case-study-how-cargill-leverages-ai-to-transform-its-global-operations/ | spa |
| dc.relation.references | Zhang, S., Xie, X., & Xu, Y. (2020). A Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity. IEEE Access, 8, 128250–128263. https://doi.org/10.1109/ACCESS.2020.3008433 | spa |
| dc.relation.references | Zhao, G., Jia, P., Huang, C., Zhou, A., & Fang, Y. (2020). A Machine Learning Based Framework for Identifying Influential Nodes in Complex Networks. IEEE Access, 8, 65462–65471. https://doi.org/10.1109/ACCESS.2020.2984286 | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 2.5 Colombia | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | spa |
| dc.subject | redes neuronales artificiales | spa |
| dc.subject | aprendizaje profundo | spa |
| dc.subject | inteligencia artificial | spa |
| dc.subject | aprendizaje automático | spa |
| dc.subject | industria 4.0 | spa |
| dc.subject.lemb | Industria | spa |
| dc.subject.lemb | Machine Learning | spa |
| dc.subject.subjectenglish | artificial neural network | spa |
| dc.subject.subjectenglish | deep learning | spa |
| dc.subject.subjectenglish | artificial intelligence | spa |
| dc.subject.subjectenglish | machine learning | spa |
| dc.subject.subjectenglish | industry 4.0 | spa |
| dc.title | Uso del aprendizaje de máquina en diferentes sectores industriales | spa |
| dc.title.alternative | Use of Machine Learning in different industrial sectors | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
| dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | spa |
| dc.type.local | Tesis de Pregrado | spa |
Archivos
Bloque original
1 - 5 de 5
Cargando...
- Nombre:
- Uso del aprendizaje de máquina en diferentes sectores industriales.pdf
- Tamaño:
- 408.85 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Articulo
Cargando...
- Nombre:
- RESUMEN.pdf
- Tamaño:
- 58.17 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...
- Nombre:
- Resolucion David.pdf
- Tamaño:
- 733.34 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...
- Nombre:
- Resolución Ciro.pdf
- Tamaño:
- 788.57 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...
- Nombre:
- Autorización repositorio.pdf
- Tamaño:
- 2.28 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: