Estado del arte de eventos catastróficos sucedidos en Colombia en el periodo (2019-2022)

dc.contributor.advisorÁlzate Buitrago, Alejandro
dc.contributor.authorZapata Durán, Kelly Dayana
dc.contributor.authorJiménez Zapata, Ian
dc.coverage.spatialPereiraspa
dc.creator.emailian-jimenezz@unilibre.edu.cospa
dc.date.accessioned2025-07-24T21:21:48Z
dc.date.available2025-07-24T21:21:48Z
dc.date.created2025-07-24
dc.description.abstractLa Gestión del Riesgo de Desastres (GRD) es fundamental en Colombia, esto debido a que es un país vulnerable a eventos catastróficos de origen natural o producidos por actividades humanas, que se han intensificado por las consecuencias que estas dejan, como los impactos que tiene en el medio ambiente y con la población, requiriendo una planeación eficaz para así minimizar consecuencias económicas y humanas. Este estudio histórico documental, se basa en un análisis censal de registros disponibles de la Unidad Nacional para la Gestión de Riesgo de Desastres (UNGRD) durante el periodo (2019-2022), en el cual se filtraron los eventos naturales más recurrentes y que impacto tenía en términos de víctimas y daños a infraestructuras en cada uno de los departamentos, los cuales fueron sectorizados por las seis regiones del país (Andina, Pacífica, Caribe, Orinoquia, Amazonia e Insular). Según los análisis realizados la región más afectada es la Andina, registrando 8662 eventos, de los cuales predomina el movimiento en masa con 4517 e incendios de cobertura vegetal con 4145, en el cual Cundinamarca fue quien presento mayores frecuencias; en esta región el evento predominante causo 496 viviendas destruidas y 36 fallecidos en Antioquia y además en Risaralda 176 centros educativos afectados. En la región Pacífica también se experimentó una alta recurrencia de movimientos en masa con 1287, concentrados en Cauca con 607 y Nariño con 539, resultando 372 viviendas destruidas en Nariño y 78 fallecidos en Cauca. En el Caribe, las inundaciones fueron el evento más recurrente con 981, destacando Bolívar con 255 eventos, 654 viviendas destruidas, 91 centros educativos afectados y 7 fallecidos. En la Orinoquia y Amazonia los incendios de cobertura vegetal fueron el evento más recurrente con 1889 y 212, con Meta liderando en la Orinoquia con 1022 incendios y Casanare reportando 3 fallecidos. Por último, en la región Insular, como evento predominante se encontró los ciclones tropicales con 12, dejando 111 viviendas destruidas y 3 fallecidos en San Andrés. Esta caracterización detallada de eventos y sus impactos es fundamental para conocer las vulnerabilidades, diseñar planes de prevención y mitigación, fomentar la conciencia comunitaria y optimizar la asignación de recursos, contribuyendo significativamente a la toma de decisiones institucionales y al ejercicio profesional en la gestión del riesgo.spa
dc.description.abstractenglishDisaster Risk Management (DRM) is fundamental in Colombia, because it is a country vulnerable to catastrophic events of natural origin or produced by human activities, which have intensified due to the consequences they leave, such as the impacts they have on the environment and the population, requiring effective planning to minimize economic and human consequences. This historical documentary study is based on a census analysis of available records of the National Unit for Disaster Risk Management (UNGRD) during the period (2019-2022), which filtered the most recurrent natural events and their impact in terms of victims and damage to infrastructure in each of the departments, which were sectored by the six regions of the country (Andean, Pacific, Caribbean, Orinoco, Amazon and Insular). According to the analyses carried out, the most affected region is the Andean region, registering 8662 events, of which mass movements predominate with 4517 and vegetation cover fires with 4145, in which Cundinamarca was the one with the highest frequency; in this region, the predominant event caused 496 homes destroyed and 36 deaths in Antioquia and 176 schools affected in Risaralda. The Pacific region also experienced a high recurrence of mass movements with 1287, concentrated in Cauca with 607 and Nariño with 539, resulting in 372 homes destroyed in Nariño and 78 deaths in Cauca. In the Caribbean, floods were the most recurrent event with 981, highlighting Bolivar with 255 events, 654 homes destroyed, 91 educational centers affected and 7 deaths. In the Orinoquia and Amazonia, vegetation fires were the most recurrent event with 1889 and 212, with Meta leading in the Orinoquia with 1022 fires and Casanare reporting 3 deaths. Finally, in the Insular region, tropical cyclones were the predominant event with 12, leaving 111 houses destroyed and 3 deaths in San Andres. This detailed characterization of events and their impacts is fundamental for understanding vulnerabilities, designing prevention and mitigation plans, promoting community awareness and optimizing the allocation of resources, contributing significantly to institutional decision-making and professional risk management.spa
dc.description.sponsorshipUniversidad Libre Seccional Pereira -- Facultad de Ingeniería -- Ingeniería Civilspa
dc.formatPDFspa
dc.identifier.urihttps://hdl.handle.net/10901/31585
dc.relation.referencesAbid, S. K., Chan, S. W., Sulaiman, N., Bhatti, U., & Nazir, U. (2023). Present and Future of Artificial Intelligence in Disaster Management. 2023 International Conference on Engineering Management of Communication and Technology, Emctech 2023 - Proceedings. https://doi.org/10.1109/EMCTECH58502.2023.10296991spa
dc.relation.referencesAbid, S. K., Sulaiman, N., Chan, S. W., Nazir, U., Abid, M., Han, H., Ariza-Montes, A., & Vega-Muñoz, A. (2021). Toward an integrated disaster management approach: How artificial intelligence can boost disaster management. Sustainability (Switzerland), 13(22). https://doi.org/10.3390/su132212560spa
dc.relation.referencesAbraham, K., Abo-Zahhad, M., & Abdelwahab, M. (2024). Natural disaster damage analysis using lightweight spatial feature aggregated deep learning model. Earth Science Informatics, 17(4), 3149–3161. https://doi.org/10.1007/s12145-024-01325-3spa
dc.relation.referencesAgrawal, N. (2018). Disaster risk management. Advances in Natural and Technological Hazards Research, 49, 81–145. https://doi.org/10.1007/978-94-024-1283-3_3spa
dc.relation.referencesAlam, F., Ahmad, K., Arid Hasan, M., Ofli, F., & Imran, M. (2023). Role of Social Media Imagery in Disaster Informatics. In International Handbook of Disaster Research. https://doi.org/10.1007/978-981-19-8388-7_170spa
dc.relation.referencesAlfredo, J., Córdoba, C., Castillo, G. B., & Román, A. Q. (2016). La Gestión de Riesgo a Desastres en Costa Rica: síntesis del III Congreso Nacional de Gestión de Riesgo a Desastres y Adaptación al Cambio Climático Disasters Risk Management in Costa Rica: synthesis of the III National Congress of Disasters Risk Management and Climate Change Adaptation.spa
dc.relation.referencesAristizábal, E., Villeros, A. de, & Riaño-Quintanilla, F. (2019). Inventory and analysis of disasters caused by natural phenomena in the Antioquia department during 2018; [Inventario y análisis de desastres por fenómenos de origen natural en el departamento de Antioquia durante el año 2018]. Boletin de Ciencias de La Tierra, 46, 15–18. https://doi.org/10.15446/rbct.n46.77482spa
dc.relation.referencesAyala-García, J., & Ospino-Ramos, K. (2021). Desastres naturales en Colombia: un análisis regional.spa
dc.relation.referencesCórdova Aguilar, H. (2020). Vulnerabilidad y gestión del riesgo de desastres frente al cambio climático en Piura, Perú. Semestre Económico, 23(54), 85–112. https://doi.org/10.22395/seec.v23n54a5spa
dc.relation.referencesDiop, S., Asongu, S. A., & Tchamyou, V. S. (2024). Mitigating the macroeconomic impact of severe natural disasters in Africa: policy synergies. Journal of Contemporary African Studies, 42(1), 59–72. https://doi.org/10.1080/02589001.2024.2317366spa
dc.relation.referencesDuarte, O. H., & Droguett, E. A. (2012). A methodology to quantitative ecological risk assessment for industrial accidents. Advances in Safety, Reliability and Risk Management - Proceedings of the European Safety and Reliability Conference, ESREL 2011, 1258–1265. https://scopus.proxyutp.elogim.com/inward/record.uri?eid=2-s2.0-84856690587&partnerID=40&md5=b737e5137281e9c0c863976dfd725969spa
dc.relation.referencesEl-Adaway, I. H. (2009). Role of computer simulation in mitigating natural catastrophic risks. TCLEE 2009: Lifeline Earthquake Engineering in a Multihazard Environment, 357, 71. https://doi.org/10.1061/41050(357)71spa
dc.relation.referencesEspinoza-Molina, J., Paucar-Caceres, A., del Carmen Silva-Cornejo, M., Quispe-Prieto, S., Acosta-Caipa Karina and Chambe-Vega, E., Osco-Mamani, E., Cordova-Buiza, F., Burrowes-Cromwell, T., & Nicole Huerta-Tantalean, L. (2022). Enabling Risk Management and Adaptation to Climate Change through a Network of Peruvian Universities. Sustainability, 14(24). https://doi.org/10.3390/su142416754spa
dc.relation.referencesGallo Álvarez, A. G., & Sánchez Dávila, D. K. (2021). Gestión de riesgos de desastres y cambio climático en la provincia de Alto Amazonas. Ciencia Latina Revista Científica Multidisciplinar, 5(5), 6686–6724. https://doi.org/10.37811/cl_rcm.v5i5.791spa
dc.relation.referencesGómez, D., García-Aristizábal, E., & Aristizábal, E. (2021). Spatial and temporal patterns of fatal landslides in Colombia. 13th Landslides and Engineered Slopes. Experience, Theory and Practice, ISL. https://scopus.proxyutp.elogim.com/inward/record.uri?eid=2-s2.0-85128282747&partnerID=40&md5=2383aa5cce3c6120293a1c502c9be481spa
dc.relation.referencesGonzales Walstrohm, C. J., Vizcarra Silvestre, R. F., Sotelo Gonzales, S., & Valdivia Oroya de Rodríguez, N. B. (2023). Gestión de riesgo de desastres en Perú. Una revisión sistemática. Revista de Climatología, 23, 2674–2679. https://doi.org/10.59427/rcli/2023/v23cs.2674-2679spa
dc.relation.referencesHuang, C.-F., Liu, A.-L., & Wang, Y. (2010). A discussion on basic definition of disaster risk. Journal of Natural Disasters, 19(6), 8–16. https://scopus.proxyutp.elogim.com/inward/record.uri?eid=2-s2.0-79956146221&partnerID=40&md5=090a6c0ac36ba8fd1e067d31febeffcdspa
dc.relation.referencesJ. Tan, M. C. (2023). Building Resilience and Community-Based Disaster Risk Management (CBDRM): Experiences and Lessons from Communities in the Philippines. In International Handbook of Disaster Research (pp. 845–862). https://doi.org/10.1007/978-981-19-8388-7_52spa
dc.relation.referencesKajitani, Y., Chang, S. E., & Tatano, H. (2013). Economic Impacts of the 2011 Tohoku-oki earthquake and tsunami. Earthquake Spectra, 29(SUPPL.1), S457–S478. https://doi.org/10.1193/1.4000108spa
dc.relation.referencesKauling, M. F., Bindé, P. J., & Kauling, F. A. S. (2017). Proposal for a heuristic ecopsychological procedure for integrated assessment of natural disaster risk. In Advances in Environmental Research (Vol. 60). https://scopus.proxyutp.elogim.com/inward/record.uri?eid=2-s2.0-85044373520&partnerID=40&md5=ab83e3bfc9ed2416b405e9ae9c182fc3spa
dc.relation.referencesKhalid, M. A., & Ali, Y. (2020). Economic impact assessment of natural disaster with multi-criteria decision making for interdependent infrastructures. Environment, Development and Sustainability, 22(8), 7287–7311. https://doi.org/10.1007/s10668-019-00499-xspa
dc.relation.referencesKoks, E. E., Thissen, M., Alfieri, L., de Moel, H., Feyen, L., Jongman, B., & Aerts, J. C. J. H. (2019). The macroeconomic impacts of future river flooding in Europe. Environmental Research Letters, 14(8). https://doi.org/10.1088/1748-9326/ab3306spa
dc.relation.referencesLee, J. S., & Kim, T. J. (2007). Spatio-temporal models for network economic loss analysis under unscheduled events: A conceptual design. Advances in Spatial Science, 9783540680550, 57–79. https://doi.org/10.1007/978-3-540-68056-7_4spa
dc.relation.referencesLloyd, E. A., & Shepherd, T. G. (2020). Environmental catastrophes, climate change, and attribution. Annals of the New York Academy of Sciences, 1469(1), 105–124. https://doi.org/10.1111/nyas.14308spa
dc.relation.referencesMagnuson, M., Campisano, R., Griggs, J., Fitz-James, S., Hall, K., Mapp, L., Mullins, M., Nichols, T., Shah, S., Silvestri, E., Smith, T., Willison, S., & Ernst, H. (2014). Analysis of environmental contamination resulting from catastrophic incidents: Part 2. Building laboratory capability by selecting and developing analytical methodologies. Environment International, 72, 90–97. https://doi.org/10.1016/j.envint.2014.01.021spa
dc.relation.referencesMalesevic Perovic, L., & Coric, B. (2025). The Impact of Economic Disasters on Multidimensional Sustainability: Evidence From Cross-Country Data. Sustainable Development, 33(3), 3615–3630. https://doi.org/10.1002/sd.3304spa
dc.relation.referencesMazzolani, F. M. (2011). Urban habitat constructions under catastrophic events: The cost C26 action. Applied Mechanics and Materials, 82, 15–25. https://doi.org/10.4028/www.scientific.net/AMM.82.15spa
dc.relation.referencesMéndez Soto, J. L. (2022). Análisis complejo de la gestión de riesgo a desastres y su aplicación a nivel comunitario. Revista Naturaleza, Sociedad y Ambiente, 9(1), 89–104. https://doi.org/10.37533/cunsurori.v9i1.78spa
dc.relation.referencesMohan, P. S., & Strobl, E. (2024). The macroeconomic impact of disasters: a review of hurricanes in Caribbean small island developing states. Climate and Development. https://doi.org/10.1080/17565529.2024.2433475spa
dc.relation.referencesMukendi, C. M., & Choi, H. (2023). 2023 14th International Conference on Information and Communication Technology Convergence (ICTC). IEEE.spa
dc.relation.referencesNatenzon, C. E. (2023). Risk Management or Risks of Management? Revista de Estudios Latinoamericanos Sobre Reduccion Del Riesgo de Desastres, 7(1), 1–5. https://doi.org/10.55467/reder.v7i1.103spa
dc.relation.referencesNirupama, N. (2013). Disaster risk management. Encyclopedia of Earth Sciences Series, 164–169. https://doi.org/10.1007/978-1-4020-4399-4_300spa
dc.relation.referencesPark, J., Son, M., & Park, C. (2017). Natural disasters and deterrence of economic innovation: A case of temporary job losses by Hurricane Sandy. Journal of Open Innovation: Technology, Market, and Complexity, 3(1). https://doi.org/10.1186/s40852-017-0055-2spa
dc.relation.referencesPimpalkar, S. P., & Sai Madhavi, D. (2025). Leveraging Social Media Data to Improve Disaster Response and Recovery Efforts Using Artificial Intelligence Techniques: A Comprehensive Review. Communications in Computer and Information Science, 2427 CCIS, 375–400. https://doi.org/10.1007/978-3-031-86299-1_26spa
dc.relation.referencesPu, F., Li, Z., Wu, Y., Ma, C., & Zhao, R. (2025). Recent Advances in Disaster Emergency Response Planning: Integrating Optimization, Machine Learning, and Simulation. https://doi.org/10.26599/SES.2025.9590007spa
dc.relation.referencesRaj, A., Arora, L., Surendranath Girija, S., Shetgaonkar, A., Pradhan, D., & Kapoor, S. (2025a). AI and Generative AI Transforming Disaster Management: A Survey of Damage Assessment and Response Techniques.spa
dc.relation.referencesRaj, A., Arora, L., Surendranath Girija, S., Shetgaonkar, A., Pradhan, D., & Kapoor, S. (2025b). AI and Generative AI Transforming Disaster Management: A Survey of Damage Assessment and Response Techniques.spa
dc.relation.referencesRajabi, E., Bazyar, J., Delshad, V., & Khankeh, H. R. (2022). The Evolution of Disaster Risk Management: Historical Approach. Disaster Medicine and Public Health Preparedness, 16(4), 1623–1627. https://doi.org/DOI: 10.1017/dmp.2021.194spa
dc.relation.referencesRohana R, Arni Y, Hakim L, Fitri EA. Evolution of disaster preparedness studies: A bibliometric approach to exploring research trends and directions. Jamba. 2025 Mar 26;17(1):1800. doi: 10.4102/jamba.v17i1.1800. PMID: 40182532; PMCID: PMC11966665.spa
dc.relation.referencesSaid, N., Ahmad, K., Regular, M., Pogorelov, K., Hassan, L., Ahmad, N., & Conci, N. (2019). Natural Disasters Detection in Social Media and Satellite imagery: a survey. http://arxiv.org/abs/1901.04277spa
dc.relation.referencesSathya, D., Ibrahim, S. P. S., & Jagadeesan, D. (2024). AI and machine learning algorithm-based solutions for complications in natural disaster. In Utilizing AI and Machine Learning for Natural Disaster Management. https://doi.org/10.4018/979-8-3693-3362-4.ch014spa
dc.relation.referencesSingh, K., Sharma, E., Baath, P. K., Kaur, K., & Singh, H. (2025). Convolutional Neural Network-based Smart Disaster Management Framework for Real-time Detection and Management of Forest Fires. International Journal of Sensors, Wireless Communications and Control. https://doi.org/10.2174/0122103279339983241028073645spa
dc.relation.referencesSoden, R., Wagenaar, D., Luo, D., & Tijssen, A. (2019). Taking Ethics, Fairness, and Bias Seriously in Machine Learning for Disaster Risk Management. http://arxiv.org/abs/1912.05538spa
dc.relation.referencesTasri, E. S., Karimi, K., & Muslim, I. (2022). The effect of economic variables on natural disasters and the impact of disasters on economic variables. Heliyon, 8(1). https://doi.org/10.1016/j.heliyon.2021.e08678spa
dc.relation.referencesTrekin, A., Novikov, G., Potapov, G., Ignatiev, V., & Burnaev, E. (2018). Satellite imagery analysis for operational damage assessment in Emergency situations. http://arxiv.org/abs/1803.00397spa
dc.relation.referencesUNGRD (2023). Registro histórico de desastres de Colombia período 2019-2022. Base de datos virtual.spa
dc.relation.referencesVasquez Molocho C. E, & Delgado Bardales D. J. M. (2021). Gestión del riesgo de desastres para mejorar el ordenamiento territorial en municipalidades. Ciencia Latina Revista Científica Multidisciplinar, 5(1), 165–186. https://doi.org/10.37811/cl_rcm.v5i1.214spa
dc.relation.referencesVasquez Molocho, C. E., & Delgado Bardales, D. J. M. (2021). Gestión del riesgo de desastres para mejorar el ordenamiento territorial en municipalidades. Ciencia Latina Revista Científica Multidisciplinar, 5(1), 165–186. https://doi.org/10.37811/cl_rcm.v5i1.214spa
dc.relation.referencesVillasana, M., Cárdenas, B. E., Adriaenséns, M., Treviño, A. C., & Lozano, J. (2016). Mainstreaming disaster risk management in higher education. AD-Minister, 28, 243–253. https://doi.org/10.17230/ad-minister.28.12spa
dc.relation.referencesWagner, F. H., Herault, B., Bonal, D., Stahl, C., Anderson, L. O., Baker, T. R., Becker, G. S., Beeckman, H., Souza, D. B., Botosso, P. C., Bowman, D. M. J. S., Braeuning, A., Brede, B., Brown, F. I., Julio Camarero, J., Camargo, P. B., Cardoso, F. C. G., Carvalho Fabricio Alvim and Castro, W., Chagas, R. K., … Bolzan Zanon Magda Lea and Aragao, L. E. O. C. (2016). Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences, 13(8), 2537–2562. https://doi.org/10.5194/bg-13-2537-2016spa
dc.relation.referencesWilches, F. J., Millán-Paramo, C., & Millán-Romero, E. (2020). Determination of the impact of natural disasters within the Colombian territory using Geographic Information Systems. International Journal of Engineering Research and Technology, 13(12), 4779–4786. https://scopus.proxyutp.elogim.com/inward/record.uri?eid=2-s2.0-85099286778&partnerID=40&md5=ef02add9c9937e327bc597937757d7ccspa
dc.relation.referencesZavala Saucedo, M. v., Backes Dos Santos, K. N., Ríos Zavala, S. M., & Colmán, D. S. (2021). Gestión de riesgo de desastres en instituciones de educación superior: una mirada desde la aplicación de un proyecto. Investigaciones y Estudios - UNA, 12. https://doi.org/10.47133/ieuna2116spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/spa
dc.subjectAnálisis territorial de desastresspa
dc.subjectDesastres naturalesspa
dc.subjectEventos catastróficosspa
dc.subjectGestión del riesgospa
dc.subjectImpacto de desastresspa
dc.subject.subjectenglishTerritorial analysis of disastersspa
dc.subject.subjectenglishNatural disastersspa
dc.subject.subjectenglishCatastrophic eventsspa
dc.subject.subjectenglishRisk managementspa
dc.subject.subjectenglishDisaster impactspa
dc.titleEstado del arte de eventos catastróficos sucedidos en Colombia en el periodo (2019-2022)spa
dc.title.alternativeState of the art of catastrophic events in Colombia in the period (2019-2022)spa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Pregradospa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Articulo Proyecto Estado Del Arte Final.pdf
Tamaño:
573.01 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
formato-autorizacion-repositorio-BIBLIOTECA.pdf
Tamaño:
348.36 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: