Evaluación de la capacidad de arrastre y transporte de sedimentos en la microcuenca de la quebrada Agua Azul, Dosquebradas, Risaralda

dc.contributor.advisorÁlzate Buitrago, Alejandro
dc.contributor.authorLemus Vivas, David Ricardo
dc.contributor.authorHernández Rodríguez, Camilo
dc.coverage.spatialPereiraspa
dc.creator.emailcamilo-hernandez@unilibre.edu.cospa
dc.date.accessioned2025-07-15T21:52:08Z
dc.date.available2025-07-15T21:52:08Z
dc.date.created2025-01-24
dc.description.abstractEl estudio se centra en la caracterización de la quebrada Agua Azul, ubicada en Dosquebradas, Risaralda, con el propósito de determinar su capacidad de arrastre y transporte de sedimentos, así como evaluar la influencia de factores como la granulometría de los sedimentos, la pendiente del cauce, la energía del flujo y las lluvias ocurridas en este proceso. Un propósito clave de la investigación fue valorar la capacidad de arrastre de cantos en función de las precipitaciones registradas, identificando patrones de desplazamiento y estabilidad en diferentes secciones hidráulicas. Los objetivos principales incluyen la medición de caudales, la caracterización granulométrica de los sedimentos y el análisis del desplazamiento de clastos en diferentes secciones hidráulicas. Para llevar a cabo esta investigación, se emplearon técnicas de aforo de caudales y análisis granulométrico, así como el monitoreo del desplazamiento de clastos representativos tras eventos de precipitación. Se realizaron mediciones en tres secciones hidráulicas (S1, S2 y S3) entre junio y octubre de 2024, registrando datos sobre el desplazamiento, peso y redondez de los clastos, y se estimó la capacidad de arrastre utilizando las fórmulas de Shields y Duboys, que permiten calcular la velocidad crítica para el movimiento de partículas y la tensión de corte en el lecho. Los hallazgos más significativos revelan que la quebrada presenta una alta variabilidad en la capacidad de transporte de sedimentos, influenciada por la pendiente, el caudal y la intensidad de las lluvias. En la sección con mayor pendiente y caudal (S2), se observó una mayor capacidad de arrastre, lo que sugiere que los clastos más pequeños y redondeados tienden a moverse más durante eventos de alta precipitación, mientras que los clastos grandes y angulosos permanecen más estables. Los datos de caudales mostraron variaciones significativas entre las secciones, con S1 registrando 0.11 m³/s, S2 con 0.20 m³/s y S3 con 0.03 m³/s. Además, se identificó una distribución de tamaños de sedimentos que varía entre las secciones, destacando que en S1 el 55% de los sedimentos oscila entre 438 y 748 g, mientras que en S2, el 75% se encuentra entre 223 y 943 g. Estos resultados son importantes para la gestión de riesgos y la planificación ambiental, ya que permiten comprender mejor la dinámica del transporte de sedimentos en la quebrada y su relación con la erosión en áreas montañosas. En conclusión, el estudio proporciona una base sólida para el diseño de medidas de mitigación y conservación en la quebrada Agua Azul, considerando la importancia de las microcuencas en la regulación del ciclo del agua y la sedimentación.spa
dc.description.abstractenglishThe study focuses on the characterization of the Agua Azul stream, located in Dosquebradas, Risaralda, with the purpose of determining its sediment drag and transport capacity, as well as evaluating the influence of factors such as sediment granulometry, channel slope, flow energy and rainfall in this process. A key purpose of the research was to assess the pebble drag capacity based on the recorded rainfall, identifying patterns of displacement and stability in different hydraulic sections. The main objectives include flow measurement, granulometric characterization of sediments and analysis of clast displacement in different hydraulic sections. To carry out this research, flow gauging and granulometric analysis techniques were used, as well as monitoring the displacement of representative clasts after precipitation events. Measurements were made in three hydraulic sections (S1, S2 and S3) between June and October 2024, recording data on clast displacement, weight and roundness, and the drag capacity was estimated using the Shields and Duboys formulas, which allow the calculation of the critical velocity for particle movement and the shear stress in the bed. The most significant findings reveal that the stream presents a high variability in sediment transport capacity, influenced by the slope, flow rate and rainfall intensity. In the section with the highest slope and flow rate (S2), a higher drag capacity was observed, suggesting that smaller and rounder clasts tend to move more during high rainfall events, while large and angular clasts remain more stable. The flow data showed significant variations between sections, with S1 recording 0.11 m³/s, S2 with 0.20 m³/s and S3 with 0.03 m³/s. In addition, a sediment size distribution was identified that varies between sections, highlighting that in S1 55% of the sediments ranged between 438 and 748 g, while in S2, 75% were between 223 and 943 g. These results are important for risk management and environmental planning, as they allow a better understanding of the dynamics of sediment transport in the stream and its relationship with erosion in mountainous areas. In conclusion, the study provides a solid basis for the design of mitigation and conservation measures in the Agua Azul stream, considering the importance of micro-basins in regulating the water cycle and sedimentation.spa
dc.description.sponsorshipUniversidad Libre Seccional Pereira -- Facultad de Ingeniería -- Ingeniería Civilspa
dc.formatPDFspa
dc.identifier.urihttps://hdl.handle.net/10901/31509
dc.relation.referencesAndrews, E. D. (1984). Bed-material entrainment and hydraulic geometry of gravel-bed rivers in Colorado. Geological Society of America Bulletin, 95(3), 371-378. https://doi.org/10.1130/0016-7606(1984)952.0.CO;2spa
dc.relation.referencesAshmore, P., & Church, M. (2001). The impact of climate change on rivers and river processes in Canada. Geological Survey of Canada Bulletin, 555, 1-48.spa
dc.relation.referencesBagnold, R. A. (1966). An approach to the sediment transport problem from general physics. U.S. Geological Survey Professional Paper 422-I. https://doi.org/10.3133/pp422Ispa
dc.relation.referencesBathurst, J. C. (1987). Measuring and modelling the sediment yield from mountain. catchments. In Erosion and Sedimentation in the Pacific Rim (pp. 163-172). International Association of Hydrological Sciences.spa
dc.relation.referencesBlott, S. J., & Pye, K. (2001). Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26(11), 1237- 1248. https://doi.org/10.1002/esp.261spa
dc.relation.referencesBridge, J. S., & Bennett, S. J. (1992). A model for the entrainment and transport of sediment grains of mixed sizes, shapes, and densities. Water Resources Research, 28(2), 337-363. https://doi.org/10.1029/91WR02577spa
dc.relation.referencesBrown, A. G., & Keller, E. A. (1988). Geomorphology and Sedimentology of Rivers. Progress in Physical Geography, 12(1), 4-37. https://doi.org/10.1177/030913338801200101 Bunte, K., & Abt, S. R. (2001). Sampling surface and subsurface particle-size distributions in wadable gravel- and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring. General Technical Report RMRS-GTR-74. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.spa
dc.relation.referencesChurch, M., & Hassan, M. A. (1992). Size and distance of travel of unconstrained clasts on a streambed. Water Resources Research, 28(1), 299-303. https://doi.org/10.1029/91WR02523spa
dc.relation.referencesBagnold, R. A. (1966). An approach to the sediment transport problem from general physics. Geological Survey Professional Paper 422-I. United States Government Printing Office.spa
dc.relation.referencesChurch, M., & Hassan, M. A. (1992). Size and distance of travel of unconstrained clasts on a streambed. Water Resources Research, 28(1), 299-303. https://doi.org/10.1029/91WR02523spa
dc.relation.referencesCosta, J. E. (1974). Response and recovery of a Piedmont watershed from tropical storm Agnes, June 1972. Water Resources Research, 10(1), 106-112. https://doi.org/10.1029/WR010i001p00106spa
dc.relation.referencesFryirs, K., & Brierley, G. J. (2013). Geomorphic analysis of river systems: An approach to reading the landscape. John Wiley & Sons.spa
dc.relation.referencesFryirs, K., Brierley, G. J., Preston, N. J., & Kasai, M. (2007). Buffers, barriers, and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, 70(1), 49-67. https://doi.org/10.1016/j.catena.2006.07.007spa
dc.relation.referencesGarcia, M. H. (2008). Sediment transport and morphodynamics. In M. H. Garcia (Ed.), Sedimentation engineering: Processes, measurements, modeling, and practice (pp. 21-163). American Society of Civil Engineers.spa
dc.relation.referencesGordon, N. D., McMahon, T. A., & Finlayson, B. L. (1992). Stream hydrology: An introduction for ecologists. John Wiley & Sons.spa
dc.relation.referencesGoudie, A. S. (2018). Human impact on the natural environment: Past, present, and future. John Wiley & Sons.spa
dc.relation.referencesHeywood, C., Makinson, K., Nicholls, K. W., & Jenkins, A. (2017). Sub-ice shelf flow: Formation of channels in the boundary layer beneath Filchner-Ronne Ice Shelf. Journal of Geophysical Research: Oceans, 122(8), 6360-6381. https://doi.org/10.1002/2017JC012970spa
dc.relation.referencesHooke, J. M. (2003). Coarse sediment connectivity in river channel systems: A conceptual framework and methodology. Geomorphology, 56(1-2), 79-94. https://doi.org/10.1016/S0169-555X(03)00058-1spa
dc.relation.referencesHorton, R. E. (1945). Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2spa
dc.relation.referencesKnight, D. W., & Shamseldin, A. Y. (2006). River basin modelling for flood risk mitigation. International Journal of River Basin Management, 4(2), 79-81. https://doi.org/10.1080/15715124.2006.9635281spa
dc.relation.referencesKnighton, D. (1998). Fluvial forms and processes: A new perspective. Arnold.spa
dc.relation.referencesKondolf, G. M., & Wolman, M. G.* (1993). The sizes of salmonid spawning gravels. Water Resources Research, 29(7), 2275-2285. https://doi.org/10.1029/93WR00402spa
dc.relation.referencesLeopold, L. B. (1964). Fluvial processes in geomorphology. W.H. Freeman.spa
dc.relation.referencesMeybeck, M. (2003). Global analysis of river systems: From Earth system controls to Anthropocene syndromes. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1440), 1935-1955. https://doi.org/10.1098/rstb.2003.1379spa
dc.relation.referencesMontgomery, D. R. (1999). Process domains and the river continuum. Journal of the American Water Resources Association, 35(2), 397-410. https://doi.org/10.1111/j.1752- 1688.1999.tb03592.xspa
dc.relation.referencesNaiman, R. J., Elliott, S. R., Helfield, J. M., & O’Keefe, T. C. (2005). Riparian ecosystems and their management: Toward a sustainable future. Science, 310(5751), 636-640. https://doi.org/10.1126/science.1103836spa
dc.relation.referencesNanson, G. C., & Croke, J. C. (1992). A genetic classification of floodplains. Geomorphology, 4(6), 459-486. https://doi.org/10.1016/0169-555X(92)90039-Qspa
dc.relation.referencesOrtega-Becerril, J. A. (2024). Evaluating the efficiency of sediment management practices in tropical watersheds. Journal of Hydraulic Engineering, 150(1), 04021058. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001903spa
dc.relation.referencesParker, G. (2008). Transport of gravel and sediment mixtures. In M. H. Garcia (Ed.), Sedimentation engineering: Processes, measurements, modeling, and practice (pp. 165-251). American Society of Civil Engineers.spa
dc.relation.referencesPoff, N. L., Allan, J. D., Bain, M. B., et al. (1997). The natural flow regime. BioScience, 47(11), 769-784. https://doi.org/10.2307/1313099spa
dc.relation.referencesRestrepo, J. D., & Escobar, J. (2009). Sediment load trends in rivers draining the Western Andes of Colombia. Science of the Total Environment, 408(7), 1556-1562. https://doi.org/10.1016/j.scitotenv.2009.12.008spa
dc.relation.referencesRinaldi, M., et al. (2003). Human impacts on fluvial geomorphology in the Mediterranean region. Environmental Management, 34(2), 255-267. https://doi.org/10.1007/s00267-003- 0010-2spa
dc.relation.referencesShields, A. (1936). Application of similarity principles and turbulence research to bed-load movement. Translated by W. P. Ott & J. C. Van Uchelen. California Institute of Technology.spa
dc.relation.referencesSurian, N., et al. (2015). Channel adjustments in river systems: Concepts and case studies. Earth Surface Processes and Landforms, 40(9), 1239-1253. https://doi.org/10.1002/esp.3710spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/spa
dc.subjectCapacidad de arrastrespa
dc.subjectCaracterización granulométricaspa
dc.subjectEventos de precipitaciónspa
dc.subjectHidráulica fluvialspa
dc.subjectMicrocuencas montañosasspa
dc.subjectTransporte de sedimentosspa
dc.subject.subjectenglishCarrying capacityspa
dc.subject.subjectenglishGranulometric characterizationspa
dc.subject.subjectenglishPrecipitation eventsspa
dc.subject.subjectenglishFluvial hydraulicsspa
dc.subject.subjectenglishMountain micro-basinsspa
dc.subject.subjectenglishSediment transportspa
dc.titleEvaluación de la capacidad de arrastre y transporte de sedimentos en la microcuenca de la quebrada Agua Azul, Dosquebradas, Risaraldaspa
dc.title.alternativeEVALUATION OF SEDIMENT TRANSPORT AND EROSION CAPACITY IN THE AGUA AZUL STREAM MICRO-BASIN, DOSQUEBRADAS, RISARALDAspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Pregradospa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
8 Trabajo Final Lemus y Hernandez (Enero24de2025).pdf
Tamaño:
1.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
formato-autorizacion-repositorio (Camilo Hernandez - David Ricardo Lemus).pdf
Tamaño:
1.2 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: