Inspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo AUA/DRONE

dc.contributor.advisorAmariles Lopez, Cristhian
dc.contributor.authorAguirre Gil, Jeferson Camilo
dc.contributor.authorGallego Lopez, Juan Felipe
dc.coverage.spatialPereiraspa
dc.creator.emailjuanf-gallegol@unilibre.edu.cospa
dc.date.accessioned2025-01-31T19:44:24Z
dc.date.available2025-01-31T19:44:24Z
dc.date.created2024-12-16
dc.description.abstractLos puentes son estructuras fundamentales para el desarrollo y sostenimiento de la vida humana, ya que permiten la conectividad y el flujo de personas y bienes, sin embargo, a lo largo de los años, uno de los mayores retos ha sido llevar a cabo estudios patológicos eficaces, debido a que la detección de patologías a menudo ocurre cuando la estructura ya está cerca del colapso o ha colapsado, lo que incrementa el riesgo para la vida humana, es por eso, que en estructuras de grandes dimensiones, como los puentes atirantados, el acceso para realizar mediciones y evaluaciones es limitado, dificultando la detección temprana de grietas y otras anomalías. y a pesar de que la industria de la construcción no ha avanzado al mismo ritmo que otras tecnologías en las últimas décadas, el uso de drones o vehículos aéreos no tripulados (UAV) ha surgido como una solución innovadora que facilita la inspección visual, especialmente en zonas de difícil acceso. Estos drones, equipados con cámaras 4K y sensores de proximidad, permiten obtener imágenes en tiempo real de las estructuras, aumentando la seguridad y eficiencia de las inspecciones, por tanto, en Colombia, los drones están autorizados a volar a una altitud máxima de 120 metros, y con un alcance horizontal de hasta 1200 metros, cumpliendo con las regulaciones aeronáuticas. En este estudio se emplearon drones para la inspección visual del Viaducto César Gaviria Trujillo, un puente atirantado en Pereira, Risaralda, que presenta una luz principal de 211 metros y pilones de 96 y 105 metros de altura, Se ha verificado que la utilización de esta tecnología permite una mejora significativa en los tiempos de inspección y en la precisión del diagnóstico de posibles fallas estructurales, cumpliendo con los lineamientos establecidos por el Manual de Inspección Visual de Puentes de INVIAS; entonces, este enfoque no solo mejora la seguridad y eficiencia del proceso, sino que representa un avance en la práctica ingenieril al integrar tecnologías emergentes para abordar los desafíos inherentes a las grandes infraestructuras.spa
dc.description.abstractenglishBridges are fundamental structures for the development and sustainment of human life, since they allow connectivity and the flow of people and goods. However, over the years, one of the biggest challenges has been to carry out effective pathological studies, because the detection of pathologies often occurs when the structure is already close to collapse or has collapsed, which increases the risk to human life. In large structures, such as cable-stayed bridges, access for measurement and assessment is limited, making early detection of cracks and other anomalies difficult. Although the construction industry has not advanced at the same pace as other technologies in recent decades, the use of drones or unmanned aerial vehicles (UAVs) has emerged as an innovative solution that facilitates visual inspection, especially in hard-to-reach areas. These drones, equipped with 4K cameras and proximity sensors, allow real-time images of structures to be obtained, increasing the safety and efficiency of inspections. In Colombia, drones are authorized to fly at a maximum altitude of 120 meters, and with a horizontal range of up to 1200 meters, in compliance with aeronautical regulations. In this study, drones were used for the visual inspection of the César Gaviria Trujillo Viaduct, a cable-stayed bridge in Pereira, Risaralda, which has a main span of 211 meters and pylons of 96 and 105 meters in height. The use of this technology allowed a significant improvement in inspection times and in the accuracy of the diagnosis of possible structural failures, complying with the guidelines established by the INVIAS Manual for Visual Inspection of Bridges. This approach not only improves the safety and efficiency of the process, but also represents an advance in engineering practice by integrating emerging technologies to address the challenges inherent to large infrastructures.spa
dc.description.sponsorshipUniversidad Libre Seccional Pereira -- Facultad de Ingeniería -- Ingeniería Civilspa
dc.formatPDFspa
dc.identifier.urihttps://hdl.handle.net/10901/30548
dc.relation.referencesAlejandrino, J., Concepcion, R., Lauguico, S., Almero, V. J., De Guia, J., Flores, R., Bandala, A., & Dadios, E. (2020, diciembre 3). Structural Health Fuzzy Classification of Bridge based on Subjective and Objective Inspections. 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2020. https://doi.org/10.1109/HNICEM51456.2020.9400054spa
dc.relation.referencesAliyari, M., Droguett, E. L., & Ayele, Y. Z. (2021). Uav-based bridge inspection via transfer learning. Sustainability (Switzerland), 13(20). https://doi.org/10.3390/su132011359spa
dc.relation.referencesAlsharqawi, M., Zayed, T., & Abu Dabous, S. (2018). Integrated condition rating and forecasting method for bridge decks using Visual Inspection and Ground Penetrating Radar. Automation in Construction, 89, 135–145. https://doi.org/10.1016/j.autcon.2018.01.016spa
dc.relation.referencesAyele, Y. Z., Aliyari, M., Griffths, D., & Droguett, E. L. (2020). Automatic crack segmentation for uav-assisted bridge inspection. Energies, 13(23). https://doi.org/10.3390/en13236250spa
dc.relation.referencesBeskopylny, A. N., Vernezi, N. L., Veremeenko, A. A., & Arakelyan, R. M. (2019). Experience non-destructive testing of the metal of bridge structures. IOP Conference Series: Materials Science and Engineering, 698(6). https://doi.org/10.1088/1757-899X/698/6/066001spa
dc.relation.referencesBolourian, N., & Hammad, A. (2020). LiDAR-equipped UAV path planning considering potential locations of defects for bridge inspection. Automation in Construction, 117. https://doi.org/10.1016/j.autcon.2020.103250spa
dc.relation.referencesBorin, P., & Cavazzini, F. (2019). CONDITION ASSESSMENT of RC BRIDGES. INTEGRATING MACHINE LEARNING, PHOTOGRAMMETRY and BIM. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2/W15), 201–208. https://doi.org/10.5194/isprs-archives-XLII-2-W15-201-2019spa
dc.relation.referencesCastellani, M., A., M., E., G.-M., F., A., & F., U. (2024). UAV photogrammetry and laser scanning of bridges: a new methodology and its application to a case study. Procedia Structural Integrity, 62, 193–200. https://doi.org/10.1016/j.prostr.2024.09.033spa
dc.relation.referencesFalorca, J. F., Miraldes, J. P. N. D., & Lanzinha, J. C. G. (2021). New trends in visual inspection of buildings and structures: Study for the use of drones. Open Engineering, 11(1), 734–743. https://doi.org/10.1515/eng-2021-0071spa
dc.relation.referencesFunabora, Y., Maeda, K., Doki, kae, & Doki, S. (2018). Flight Path Planning of Multiple UAVs for Robust Localization near Infrastructure Facilities* (A. Japan, Ed.). Institute of Electrical and Electronics Engineers.spa
dc.relation.referencesGodart, B. (2015). Pathology, appraisal, repair and management of old prestressed concrete beam and slab bridges. Structure and Infrastructure Engineering, 11(4), 501–518. https://doi.org/10.1080/15732479.2014.951865spa
dc.relation.referencesGomez-Cardenas, C., Sbartaï, Z. M., Balayssac, J. P., Garnier, V., & Breysse, D. (2015). New optimization algorithm for optimal spatial sampling during non-destructive testing of concrete structures. Engineering Structures, 88, 92–99. https://doi.org/10.1016/j.engstruct.2015.01.014spa
dc.relation.referencesGómez-Soberón, M. C., Pérez, E., Salas, D., & De León-Escobedo, D. (2022). Seismic vulnerability through drift assessment for bridges with geometrical irregularities. European Journal of Environmental and Civil Engineering, 26(3), 919–932. https://doi.org/10.1080/19648189.2019.1686428spa
dc.relation.referencesGonçalves Cardoso, M. (2008). Engenharia Civil Inspeção de ponte ferroviária metálica: verificação da capacidade de carga da “Ponte da Barra” em Ouro Preto/MG (Inspection of steel bridge railway verification of carrying capacity of the “Bridge of Barra” in Ouro Preto/MG) Luiz Cláudio Cândido (Vol. 61, Número 2).spa
dc.relation.referencesGuo li Gaoxiong da xue, IEEE Computer Society, & Institute of Electrical and Electronics Engineers. (2019). Proceedings, the 2019 International Conference on Technologies and Applications of Artificial Intelligence : TAAI 2019 : Kaohsiung, Taiwan, Nov. 21-23, 2019.spa
dc.relation.referencesHartung, R., Naraniecki, H., Klemt-Albert, K., & Marx, S. (2020). Konzept zur BIM-basierten Instandhaltung von Ingenieurbauwerken mit Monitoringsystemen. Bautechnik, 97(12), 826–835. https://doi.org/10.1002/bate.202000095spa
dc.relation.referencesHuang, I. F., & Chen, P. H. (2020). Automated steel bridge coating rust defect recognition method based on U-net fully convolutional networks. 2nd IEEE International Conference on Architecture, Construction, Environment and Hydraulics 2020, ICACEH 2020, 18–21. https://doi.org/10.1109/ICACEH51803.2020.9366258spa
dc.relation.referencesJafari, F., & Dorafshan, S. (2021). Bridge inspection and defect recognition with using impact echo data, probability, and naive bayes classifiers. Infrastructures, 6(9). https://doi.org/10.3390/infrastructures6090132spa
dc.relation.referencesJin Lim, H., Hwang, S., Kim, H., & Sohn, H. (2021). Steel bridge corrosion inspection with combined vision and thermographic images. Structural Health Monitoring, 20(6), 3424–3435. https://doi.org/10.1177/1475921721989407spa
dc.relation.referencesKao, S. P., Wang, F. L., Lin, J. S., Tsai, J., Chu, Y. De, & Hung, P. S. (2022). Bridge Crack Inspection Efficiency of an Unmanned Aerial Vehicle System with a Laser Ranging Module. Sensors, 22(12). https://doi.org/10.3390/s22124469spa
dc.relation.referencesLallam, M., Mammeri, A., & Djebli, A. (2021). Fuzzy analytical hierarchy processes for damage state assessment of arch masonry bridge. Civil Engineering Journal (Iran), 7(11), 1933–1946. https://doi.org/10.28991/cej-2021-03091770spa
dc.relation.referencesLarsson Ivanov, O., Björnsson, I., Honfi, D., & Leander, J. (2022). The practical value of structural health information for time dependence in bridge maintenance. Structure and Infrastructure Engineering, 18(4), 476–491. https://doi.org/10.1080/15732479.2021.1890141spa
dc.relation.referencesLaureano Gómez, P. (2006). ESTUDIO E INVESTIGACIÓN DEL ESTADO ACTUAL DE LAS OBRAS DE LA RED NACIONAL DE CARRETERAS CONVENIO INTERADMINISTRATIVO 0587-03 MANUAL PARA LA INSPECCIÓN VISUAL DE PUENTES Y PONTONES REPÚBLICA DE COLOMBIA MINISTERIO DE TRANSPORTE INSTITUTO NACIONAL DE VÍAS. www.invias.gov.cospa
dc.relation.referencesLiao, M., Ding, X., & Qin, X. (2018). Capturing the Deformation Characteristics of Cable- stayed Bridges with Multi-temporal SAR Interferometry. Institute of Electrical and Electronics Engineers.spa
dc.relation.referencesLiu, J.-S., Soong, R.-T., & Huang, Y.-T. (2019). UAV System Integration of Real-time Sensing and Flight Task Control for Autonomous Building Inspection Task. Conference Publishing Services, IEEE Computer Society.spa
dc.relation.referencesMatlekovic, L., Juric, F., & Schneider-Kamp, P. (2022). Microservices for autonomous UAV inspection with UAV simulation as a service. Simulation Modelling Practice and Theory, 119. https://doi.org/10.1016/j.simpat.2022.102548spa
dc.relation.referencesMetni, N., & Hamel, T. (2007). A UAV for bridge inspection: Visual servoing control law with orientation limits. Automation in Construction, 17(1), 3–10. https://doi.org/10.1016/j.autcon.2006.12.010spa
dc.relation.referencesMetni, N., Hamel, T., & Derkx, F. (2004). A UAV for bridges’ inspection: Visual servoing control law with orientation limits. IFAC Proceedings Volumes (IFAC-PapersOnline), 37(8), 454–459. https://doi.org/10.1016/s1474-6670(17)32018-9spa
dc.relation.referencesNapolitano, R., Hess, M., & Glisic, B. (2020). Quantifying the Differences in Documentation and Modeling Levels for Building Pathology and Diagnostics. Archives of Computational Methods in Engineering, 27(4), 1135–1152. https://doi.org/10.1007/s11831-019-09350-yspa
dc.relation.referencesOliveros-Esco, J., Gracia-Villa, L., & López-Mesa, B. (2022). 2D image-based crack monitoring: an affordable, sufficient and non-invasive technique for the democratization of preventive conservation of listed buildings. Heritage Science, 10(1). https://doi.org/10.1186/s40494-022-00780-9spa
dc.relation.referencesPeng, X., Zhong, X., Zhao, C., Chen, A., & Zhang, T. (2021). A UAV-based machine vision method for bridge crack recognition and width quantification through hybrid feature learning. Construction and Building Materials, 299. https://doi.org/10.1016/j.conbuildmat.2021.123896spa
dc.relation.referencesPerry, B. J., Guo, Y., Atadero, R., & van de Lindt, J. W. (2020). Streamlined bridge inspection system utilizing unmanned aerial vehicles (UAVs) and machine learning. Measurement: Journal of the International Measurement Confederation, 164. https://doi.org/10.1016/j.measurement.2020.108048spa
dc.relation.referencesQin, X., Ding, X., & Liao, M. (2018). 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications : 2-4 July 2018, Duisburg, Germany. Institute of Electrical and Electronics Engineers.spa
dc.relation.referencesRau, J. Y., Hsiao, K. W., Jhan, J. P., Wang, S. H., Fang, W. C., & Wang, J. L. (2017). Bridge crack detection using multi-rotary UAV and object-base image analysis. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2W6), 311–318. https://doi.org/10.5194/isprs-archives-XLII-2-W6-311-2017spa
dc.relation.referencesSokolović, N. M., Petrović, M., Kontić, A., Koprivica, S., & Šekularac, N. (2021). Inspection and assessment of masonry arch bridges: Ivanjica case study. Sustainability (Switzerland), 13(23). https://doi.org/10.3390/su132313363spa
dc.relation.referencesStevens, N. A., Lydon, M., Marshall, A. H., & Taylor, S. (2020). Identification of bridge key performance indicators using survival analysis for future network-wide structural health monitoring. Sensors (Switzerland), 20(23), 1–15. https://doi.org/10.3390/s20236894spa
dc.relation.referencesSun, Y., Huang, P., Su, J., & Wang, T. (2018). Depth estimation of surface-opening crack in concrete beams using impact-echo and non-contact video-based methods. Eurasip Journal on Image and Video Processing, 2018(1). https://doi.org/10.1186/s13640-018-0382-7spa
dc.relation.referencesTan, Y., Yi, W., Chen, P., & Zou, Y. (2024). An adaptive crack inspection method for building surface based on BIM, UAV and edge computing. Automation in Construction, 157. https://doi.org/10.1016/j.autcon.2023.105161spa
dc.relation.referencesTang, L. (2021). Maintenance and inspection of fiber-reinforced polymer (Frp) bridges: A review of methods. Materials, 14(24). https://doi.org/10.3390/ma14247826spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/spa
dc.subjectAtirantadospa
dc.subjectDronespa
dc.subjectEstructuraspa
dc.subjectInspeccion visualspa
dc.subjectMantenimientospa
dc.subjectPatologiaspa
dc.subjectTratamientospa
dc.subjectVisibilidadspa
dc.subject.subjectenglishCable Stayedspa
dc.subject.subjectenglishDronespa
dc.subject.subjectenglishStructurespa
dc.subject.subjectenglishVisual Inspeccionspa
dc.subject.subjectenglishMaintenancespa
dc.subject.subjectenglishPathologyspa
dc.subject.subjectenglishTreatmentspa
dc.subject.subjectenglishVisibilityspa
dc.titleInspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo AUA/DRONEspa
dc.title.alternativeVisual inspection of Cesar Gaviria Trujillo Viaduct in the city of Pereira, Risaralda, by AUS/DRONEspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Pregradospa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Inspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo .pdf
Tamaño:
1.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Autoriz publicación de trabajos en formato digital(V5).pdf
Tamaño:
324.53 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: