Análisis in silico de genes vinculados a la biosíntesis de ácido indolacético (AIA) asociados a aislamientos bacterianos de suelos agrícolas del Eje Cafetero

dc.contributor.advisorRivera Rodríguez, Silvia
dc.contributor.authorJaramillo Zárate, María José
dc.coverage.spatialPereiraspa
dc.date.accessioned2025-01-20T15:11:11Z
dc.date.available2025-01-20T15:11:11Z
dc.date.created2024-06-12
dc.description.abstractEl ácido indolacético (AIA) es una de las principales fitohormonas responsables de la morfogénesis de las plantas y un metabolito secundario bacteriano de interés en las Bacterias Promotoras de Crecimiento Vegetal (BPCV). En las aplicaciones biotecnológicas que se dan en la agricultura, como la formulación de bioinsumos, se requiere de una caracterización amplia y detallada de las propiedades y mecanismos con los que el microorganismo puede impactar positivamente la planta y/o el entorno de esta. No obstante, la biosíntesis del AIA en BPCV no cuenta con una exploración amplia, y la bioinformática representa una herramienta valiosa para develar información sobre este metabolismo de forma integral. En esta investigación se realizó el análisis bioinformático de los cinco morfotipos con mayor producción de AIA dentro del proyecto “Biotecnología Agrícola para Producción de Hortalizas en Risaralda” (Bueno-López, 2023) a partir de las secuencias ARNr 16S y sus genomas homólogos, para comprobar las bases genéticas y moleculares de este proceso metabólico, en conjunto con propiedades genómicas que justifican su potencialidad para procesos biotecnológicos. Se demuestra que las especies homólogas son pertenecientes de Pseudomonas, Burkholderia y Bacillus, géneros relevantes en las BPCV. Se determinó la existencia de los genes para dos rutas biosintéticas dependientes de TRP y cómo su filiación a un mismo grupo de genes homólogos, clusters y relaciones filogenéticas se constituyen desde las regiones conservadas en los genomas de Pseudomonas y Burkholderia, y del enfoque de investigación del AIA para estos dos géneros. Se encuentra que la producción de AIA in vitro en BPCV suele estar asociada a otras actividades promotoras de crecimiento vegetal que suman a la respuesta de la planta hacia el estrés ambiental. Este estudio termina sumándole valor agregado a los candidatos para la propuesta de formulación de un bioinsumo, y destaca la importancia de la aplicación de herramientas in silico en pro del desarrollo agrícola y de los contextos de investigación desde la academia.spa
dc.description.abstractenglishIndole-3-acetic acid (IAA) is one of the main phytohormones responsible for plant morphogenesis and a bacterial secondary metabolite of interest in Plant Growth Promoting Bacteria (PGPB). Biotechnological applications in agriculture, such as the formulation of biofertilizers, require extensive and detailed characterization of the properties and mechanisms by which the microorganism can positively impact the plant and/or its environment. However, the biosynthesis of IAA in PGPB is not widely explored, and bioinformatics represents a valuable tool to unveil information about this metabolism in a comprehensive manner. In this research, the bioinformatic analysis of the five morphotypes with the highest IAA production within the project “Biotecnología Agrícola para Producción de Hortalizas en Risaralda” (Bueno-López, 2023) is carried out based on 16S rRNA sequences and their homologous genomes, to verify the genetic and molecular basis of this metabolic process, together with genomic properties that justify its potential for biotechnological processes. It is demonstrated that the homologous species belong to Pseudomonas, Burkholderia and Bacillus, relevant genera in PGPB. We determine the existence of genes for two TRP-dependent biosynthetic pathways and how their affiliation to the same homologous gene group, clusters and phylogenetic relationships are constituted from conserved regions in the genomes of Pseudomonas and Burkholderia, and from the research focus of IAA for these two genera. It is found that in vitro IAA production in PGPB is often associated with other plant growth-promoting activities that add to the plant's response to environmental stress. This study ends up adding value to the candidates for the proposed formulation of a biofertilizer and highlights the importance of the application of in silico tools for agricultural development and research contexts from academiaspa
dc.description.sponsorshipUniversidad Libre seccional Pereira -- Facultad de Ciencias de la Salud, Exactas y Naturales -- Microbiologíaspa
dc.formatPDFspa
dc.identifier.urihttps://hdl.handle.net/10901/30432
dc.relation.referencesBueno-López, L. (2023). Informe Técnico de Avance Final de Programas y Proyectos de CTeI: “Bio-tecnología Agrícola para producción de hortalizas en Risaralda. Cod. 1208-893-82785, CT. 435-2021 (Final 4; p. Anexos 11 y 12). Universidad Libre seccional Pereiraspa
dc.relation.referencesAgosti, D., Benichou, L., Addink, W., Arvanitidis, C., Catapano, T., Cochrane, G., Dillen, M., Döring, M., Georgiev, T., Gérard, I., Groom, Q., Kishor, P., Kroh, A., Kvaček, J., Mergen, P., Mietchen, D., Pauperio, J., Sautter, G., & Penev, L. (2022). Recommendations for use of annotations and persistent identifiers in taxonomy and biodiversity publishing. Research Ideas and Outcomes, 8, e97374. https://doi.org/10.3897/rio.8.e97374spa
dc.relation.referencesAhmad, E., Sharma, S. K., & Sharma, P. K. (2021). Deciphering operation of tryptophanindependent pathway in high indole-3-acetic acid (IAA) producing Micrococcus aloeverae DCB-20. FEMS Microbiology Letters, 367(24), fnaa190. https://doi.org/10.1093/femsle/fnaa190spa
dc.relation.referencesAit Bessai, S., Bensidhoum, L., & Nabti, E. (2022). Optimization of IAA production by telluric bacteria isolated from northern Algeria. Biocatalysis and Agricultural Biotechnology, 41, 102319. https://doi.org/10.1016/j.bcab.2022.102319spa
dc.relation.referencesAlkhalaf, L. M., & Ryan, K. S. (2015). Biosynthetic Manipulation of Tryptophan in Bacteria: Pathways and Mechanisms. Chemistry & Biology, 22(3), 317–328. https://doi.org/10.1016/j.chembiol.2015.02.005spa
dc.relation.referencesAltschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2spa
dc.relation.referencesAmezquita-Aviles, C. F., Coronel-Acosta, C. B., Santos-Villalobos, S. de los, Santoyo, G., Parra-Cota, F. I., Amezquita-Aviles, C. F., Coronel-Acosta, C. B., Santos-Villalobos, S. de los, Santoyo, G., & Parra-Cota, F. I. (2022). Characterization of native plant growth-promoting bacteria (PGPB) and their effect on the development of maize (Zea mays L.). Biotecnia, 24(1), 15–22. https://doi.org/10.18633/biotecnia.v24i1.1353spa
dc.relation.referencesAron, S., Jongeneel, C. V., Chauke, P. A., Chaouch, M., Kumuthini, J., Zass, L., Radouani, F., Kassim, S. K., Fadlelmola, F. M., & Mulder, N. (2021). Ten simple rules for developing bioinformatics capacity at an academic institution. PLOS Computational Biology, 17(12), e1009592. https://doi.org/10.1371/journal.pcbi.1009592spa
dc.relation.referencesBarbosa-Nuñez, J. A., Palacios, O. A., de-Bashan, L. E., Snell-Castro, R., Corona-González, R. I., & Choix, F. J. (2022). Active indole-3-acetic acid biosynthesis by the bacterium 48 Azospirillum brasilense cultured under a biogas atmosphere enables its beneficial association with microalgae. Journal of Applied Microbiology, 132(5), 3650–3663. https://doi.org/10.1111/jam.15509spa
dc.relation.referencesBenson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41(Database issue), D36- 42. https://doi.org/10.1093/nar/gks1195spa
dc.relation.referencesBernal, P., Civantos, C., Pacheco-Sánchez, D., Quesada, J. M., Filloux, A., & Llamas, M. A. (2023). Transcriptional organization and regulation of the Pseudomonas putida K1 type VI secretion system gene cluster. Microbiology (Reading, England), 169(1), 001295. https://doi.org/10.1099/mic.0.001295spa
dc.relation.referencesBoonmahome, P., & Mongkolthanaruk, W. (2022). Characterization of indole-3-acetic acid biosynthesis and stability from Micrococcus luteus. Journal of Applied Biology & Biotechnology. https://doi.org/10.7324/JABB.2023.117202spa
dc.relation.referencesBose, R., Buneman, P., & Ecklund, D. J. (2006). Annotating scientific data: Why it is important and why it is difficult. Proceedings of the 2006 UK e-Science all hands meeting, 739–747. https://api.semanticscholar.org/CorpusID:13817766spa
dc.relation.referencesBriggs, S. P. (1998). Plant genomics: More than food for thought. Proceedings of the National Academy of Sciences, 95(5), 1986–1988. https://doi.org/10.1073/pnas.95.5.1986spa
dc.relation.referencesBrown, L., Villegas, J. M., Elean, M., Fadda, S., Mozzi, F., Saavedra, L., & Hebert, E. M. (2017). YebC, a putative transcriptional factor involved in the regulation of the proteolytic system of Lactobacillus. Scientific Reports, 7(1), 8579. https://doi.org/10.1038/s41598-017-09124-1spa
dc.relation.referencesCapuchina González, S. M., Rodríguez-Castillejos, G., Lizarazo-Ortega, C., Sánchez-Yáñez, J. M., Cano, E. G., Oliva-Hernández, A. A., Jiménez, M. C. H., & HernándezMendoza, J. L. (2021). Study of indole-3-acetic acid biosynthesis pathways in Bradyrhizobium japonicum BJBV-05. Interciencia, 46(5), 198–203.spa
dc.relation.referencesCerboneschi, M., Decorosi, F., Biancalani, C., Ortenzi, M. V., Macconi, S., Giovannetti, L., Viti, C., Campanella, B., Onor, M., Bramanti, E., & Tegli, S. (2016). Indole-3-acetic acid in plant–pathogen interactions: A key molecule for in planta bacterial virulence and fitness. Research in Microbiology, 167(9–10), 774–787. https://doi.org/10.1016/j.resmic.2016.09.002spa
dc.relation.referencesChen, B., Luo, S., Wu, Y., Ye, J., Wang, Q., Xu, X., Pan, F., Khan, K. Y., Feng, Y., & Yang, X. (2017). The Effects of the Endophytic Bacterium Pseudomonas fluorescens Sasm05 and IAA on the Plant Growth and Cadmium Uptake of Sedum alfredii Hance. Frontiers in Microbiology, 8, 2538. https://doi.org/10.3389/fmicb.2017.02538spa
dc.relation.referencesCheng, F., & Cheng, Z. (2015). Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.01020spa
dc.relation.referencesCoenye, T., Vandamme, P., Govan, J. R. W., & LiPuma, J. J. (2001). Taxonomy and Identification of the Burkholderia cepacia Complex. Journal of Clinical Microbiology, 39(10), 3427–3436. https://doi.org/10.1128/JCM.39.10.3427- 3436.2001spa
dc.relation.referencesCohen, J. D., & Strader, L. C. (2024). An auxin research odyssey: 1989–2023. The Plant Cell, 36(5), 1410–1428. https://doi.org/10.1093/plcell/koae054spa
dc.relation.referencesDezfulian, M. H., Foreman, C., Jalili, E., Pal, M., Dhaliwal, R. K., Roberto, D. K. A., Imre, K. M., Kohalmi, S. E., & Crosby, W. L. (2017). Acetolactate synthase regulatory subunits play divergent and overlapping roles in branched-chain amino acid synthesis and Arabidopsis development. BMC Plant Biology, 17(1), 71. https://doi.org/10.1186/s12870-017-1022-6spa
dc.relation.referencesDuca, D. R., Rose, D. R., & Glick, B. R. (2018). Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4. Antonie van Leeuwenhoek, 111(9), 1645–1660. https://doi.org/10.1007/s10482-018-1051-7spa
dc.relation.referencesEberl, L., & Tümmler, B. (2004). Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: Genome evolution, interactions and adaptation. International Journal of Medical Microbiology, 294(2–3), 123–131. https://doi.org/10.1016/j.ijmm.2004.06.022spa
dc.relation.referencesEspinosa-Victoria, D., López-Reyes, L., Carcaño-Montiel, M. G., & Serret-López, M. (2020). The Burkholderia genus: Between mutualism and pathogenicity. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 38(3). https://doi.org/10.18781/R.MEX.FIT.2004-5spa
dc.relation.referencesFigueredo, E. F., Cruz, T. A. D., Almeida, J. R. D., Batista, B. D., Marcon, J., Andrade, P. A. M. D., Hayashibara, C. A. D. A., Rosa, M. S., Azevedo, J. L., & Quecine, M. C. (2023). The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system. Microbiological Research, 266, 127218. https://doi.org/10.1016/j.micres.2022.127218spa
dc.relation.referencesFujibuchi, W., Goto, S., Migimatsu, H., Uchiyama, I., Ogiwara, A., Akiyama, Y., & Kanehisa, M. (1998). DBGET/LinkDB: An integrated database retrieval system. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 683–694spa
dc.relation.referencesGamalero, E., Bona, E., & Glick, B. R. (2022). Current Techniques to Study Beneficial PlantMicrobe Interactions. Microorganisms, 10(7), 1380. https://doi.org/10.3390/microorganisms10071380spa
dc.relation.referencesGang, S., Saraf, M., Waite, C. J., Buck, M., & Schumacher, J. (2018). Mutualism between Klebsiella SGM 81 and Dianthus caryophyllus in modulating root plasticity and rhizospheric bacterial density. Plant and Soil, 424(1), 273–288. https://doi.org/10.1007/s11104-017-3440-5spa
dc.relation.referencesGang, S., Sharma, S., Saraf, M., Buck, M., & Schumacher, J. (2019). Analysis of Indole-3- acetic Acid (IAA) Production in Klebsiellaby LC-MS/MS and the Salkowski Method. Bio-Protocol, 9(9), e3230. https://doi.org/10.21769/BioProtoc.3230spa
dc.relation.referencesGaweska, H. M., Taylor, A. B., Hart, P. J., & Fitzpatrick, P. F. (2013). Structure of the Flavoprotein Tryptophan 2-Monooxygenase, a Key Enzyme in the Formation of Galls in Plants. Biochemistry, 52(15), 2620–2626. https://doi.org/10.1021/bi4001563spa
dc.relation.referencesGhadamgahi, F., Tarighi, S., Taheri, P., Saripella, G. V., Anzalone, A., Kalyandurg, P. B., Catara, V., Ortiz, R., & Vetukuri, R. R. (2022). Plant Growth-Promoting Activity of Pseudomonas aeruginosa FG106 and Its Ability to Act as a Biocontrol Agent against Potato, Tomato and Taro Pathogens. Biology, 11(1), 140. https://doi.org/10.3390/biology11010140spa
dc.relation.referencesGoddijn, O. J. M., Lohman, F. P., de Kam, R. J., hilperoort, R. A., & Hoge, J. H. C. (1994). Nucleotide sequence of the tryptophan decarboxylase gene of Catharanthus roseus and expression of tdc-gusA gene fusions in Nicotiana tabacum. Molecular and General Genetics MGG, 242(2), 217–225. https://doi.org/10.1007/BF00391016spa
dc.relation.referencesGomes, G. L. B., & Scortecci, K. C. (2021). Auxin and its role in plant development: Structure, signalling, regulation and response mechanisms. Plant Biology, 23(6), 894–904. https://doi.org/10.1111/plb.13303spa
dc.relation.referencesGómez-Godínez, L. J., Ochoa, V., Faggioli, V., & Cristancho, M. (2024). EXPLORING THE SOIL-ASSOCIATED BACTERIAL MICROBIOME OF COFFEE PLANTATIONS IN DIFFERENT REGIONS OF COLOMBIA: A METABARCODING APPROACH. Tropical and Subtropical Agroecosystems, 27(2). https://doi.org/10.56369/tsaes.5196spa
dc.relation.referencesGonçalves, S., Nunes-Costa, D., Cardoso, S. M., Empadinhas, N., & Marugg, J. D. (2022). Enzyme Promiscuity in Serotonin Biosynthesis, From Bacteria to Plants and Humans. Frontiers in Microbiology, 13, 873555. https://doi.org/10.3389/fmicb.2022.873555spa
dc.relation.referencesGuenter, J., & Lenartowski, R. (2016). Molecular characteristic and physiological role of DOPA-decarboxylase. Postępy Higieny i Medycyny Doświadczalnej, 70, 1424–1440. https://doi.org/10.5604/17322693.1227773spa
dc.relation.referencesHashem, A., Tabassum, B., & Fathi Abd Allah, E. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004spa
dc.relation.referencesHeine, T., van Berkel, W. J. H., Gassner, G., van Pée, K.-H., & Tischler, D. (2018). TwoComponent FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. Biology, 7(3), 42. https://doi.org/10.3390/biology7030042spa
dc.relation.referencesJohnson, J. M. B., & Kunkel, B. N. (2024). AefR, a TetR Family Transcriptional Repressor, Regulates Several Auxin Responses in Pseudomonas syringae Strain Pto DC3000. Molecular Plant-Microbe Interactions®, 37(2), 155–165. https://doi.org/10.1094/MPMI-10-23-0170-Rspa
dc.relation.referencesKanehisa, M. (1997). Linking databases and organisms: GenomeNet resources in Japan. Trends in Biochemical Sciences, 22(11), 442–444. https://doi.org/10.1016/S0968- 0004(97)01130-4spa
dc.relation.referencesKanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1), D457–D462. https://doi.org/10.1093/nar/gkv1070spa
dc.relation.referencesKanehisa, M., Sato, Y., & Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. Journal of Molecular Biology, 428(4), 726–731. https://doi.org/10.1016/j.jmb.2015.11.006spa
dc.relation.referencesKanethisa, M., Klein, P., Greif, P., & DeLisi, C. (1984). Computer analysis and structure prediction of nucleic acid and proteins. Nucleic Acids Research, 12(1Part1), 417–428. https://doi.org/10.1093/nar/12.1Part1.417spa
dc.relation.referencesKavana, M., & Moran, G. R. (2003). Interaction of (4-Hydroxyphenyl)pyruvate Dioxygenase with the Specific Inhibitor 2-[2-Nitro-4-(trifluoromethyl)benzoyl]-1,3- cyclohexanedione. Biochemistry, 42(34), 10238–10245. https://doi.org/10.1021/bi034658bspa
dc.relation.referencesKeswani, C., Singh, S. P., Cueto, L., García-Estrada, C., Mezaache-Aichour, S., Glare, T. R., Borriss, R., Singh, S. P., Blázquez, M. A., & Sansinenea, E. (2020). Auxins of microbial origin and their use in agriculture. Applied Microbiology and Biotechnology, 104(20), 8549–8565. https://doi.org/10.1007/s00253-020-10890-8spa
dc.relation.referencesKhan, N., Bano, A., Ali, S., & Babar, Md. A. (2020). Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regulation, 90(2), 189–203. https://doi.org/10.1007/s10725-020-00571-xspa
dc.relation.referencesKoga, J., Adachi, T., & Hidaka, H. (1991). Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Molecular and General Genetics MGG, 226(1), 10–16. https://doi.org/10.1007/BF00273581spa
dc.relation.referencesKohlen, W., Ng, J. L. P., Deinum, E. E., & Mathesius, U. (2018). Auxin transport, metabolism, and signalling during nodule initiation: Indeterminate and determinate nodules. Journal of Experimental Botany, 69(2), 229–244. https://doi.org/10.1093/jxb/erx308spa
dc.relation.referencesKong, P., & Hong, C. (2020). Endophytic Burkholderia sp. SSG as a potential biofertilizer promoting boxwood growth. PeerJ, 8, e9547. https://doi.org/10.7717/peerj.9547spa
dc.relation.referencesKoshiba, T., Saito, E., Ono, N., Yamamoto, N., & Sato, M. (1996). Purification and Properties of Flavin- and Molybdenum-Containing Aldehyde Oxidase from Coleoptiles of Maize. Plant Physiology, 110(3), 781–789. https://doi.org/10.1104/pp.110.3.781spa
dc.relation.referencesKoyanagi, T., Nakagawa, A., Sakurama, H., Yamamoto, K., Sakurai, N., Takagi, Y., Minami, H., Katayama, T., & Kumagai, H. (2012). Eukaryotic-type aromatic amino acid decarboxylase from the root colonizer Pseudomonas putida is highly specific for 3,4- dihydroxyphenyl-l-alanine, an allelochemical in the rhizosphere. Microbiology, 158(12), 2965–2974. https://doi.org/10.1099/mic.0.062463-0spa
dc.relation.referencesKumari, E., Kumari, S., Das, S. S., Mahapatra, M., & Sahoo, J. P. (2023). Plant GrowthPromoting Bacteria (PGPB) for Sustainable Agriculture: Current Prospective and Future Challenges. AgroEnvironmental Sustainability, 1(3), Article 3. https://doi.org/10.59983/s2023010309spa
dc.relation.referencesKunkel, B. N., & Harper, C. P. (2018). The roles of auxin during interactions between bacterial plant pathogens and their hosts. Journal of Experimental Botany, 69(2), 245–254. https://doi.org/10.1093/jxb/erx447spa
dc.relation.referencesKunkel, B. N., & Johnson, J. M. B. (2021). Auxin Plays Multiple Roles during Plant– Pathogen Interactions. Cold Spring Harbor Perspectives in Biology, 13(9), a040022. https://doi.org/10.1101/cshperspect.a040022spa
dc.relation.referencesLaird, T. S., Flores, N., & Leveau, J. H. J. (2020). Bacterial catabolism of indole-3-acetic acid. Applied Microbiology and Biotechnology, 104(22), 9535–9550. https://doi.org/10.1007/s00253-020-10938-9spa
dc.relation.referencesLaw, S. R., Mathes, F., Paten, A. M., Alexandre, P. A., Regmi, R., Reid, C., Safarchi, A., Shaktivesh, S., Wang, Y., Wilson, A., Rice, S. A., & Gupta, V. V. S. R. (2024). Life at the borderlands: Microbiomes of interfaces critical to One Health. FEMS Microbiology Reviews, 48(2), fuae008. https://doi.org/10.1093/femsre/fuae008spa
dc.relation.referencesLeón-Sicard, T., Prager, M. S. de, Rojas, L. J., Ortiz, J. C., Alviar, J. A. B., Osorio, Á. A., & Leiton, A. A. (2015). Hacia una historia de la agroecología en Colombia. Agroecología, 10(2), Article 2.spa
dc.relation.referencesLi, M., Guo, R., Yu, F., Chen, X., Zhao, H., Li, H., & Wu, J. (2018). Indole-3-Acetic Acid Biosynthesis Pathways in the Plant-Beneficial Bacterium Arthrobacter pascens ZZ21. International Journal of Molecular Sciences, 19(2), Article 2. https://doi.org/10.3390/ijms19020443spa
dc.relation.referencesLiang, H., Li, L., Dong, Z., Surette, M. G., & Duan, K. (2008). The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. Journal of Bacteriology, 190(18), 6217–6227. https://doi.org/10.1128/JB.00428-08spa
dc.relation.referencesLiang, J., Han, Q., Tan, Y., Ding, H., & Li, J. (2019). Current Advances on Structure-Function Relationships of Pyridoxal 5′-Phosphate-Dependent Enzymes. Frontiers in Molecular Biosciences, 6, 4. https://doi.org/10.3389/fmolb.2019.00004spa
dc.relation.referencesLin, H.-R., Shu, H.-Y., & Lin, G.-H. (2018). Biological roles of indole-3-acetic acid in Acinetobacter baumannii. Microbiological Research, 216, 30–39. https://doi.org/10.1016/j.micres.2018.08.004spa
dc.relation.referencesLiu, W.-H., Chen, F.-F., Wang, C.-E., Fu, H.-H., Fang, X.-Q., Ye, J.-R., & Shi, J.-Y. (2019). Indole-3-Acetic Acid in Burkholderia pyrrocinia JK-SH007: Enzymatic Identification of the Indole-3-Acetamide Synthesis Pathway. Frontiers in Microbiology, 10, 2559. https://doi.org/10.3389/fmicb.2019.02559spa
dc.relation.referencesLobo, L. L. B., Da Silva, M. S. R. D. A., Carvalho, R. F., & Rigobelo, E. C. (2023). The Negative Effect of Coinoculation of Plant Growth-Promoting Bacteria Is Not Related to Indole-3-Acetic Acid Synthesis. Journal of Plant Growth Regulation, 42(4), 2317– 2326. https://doi.org/10.1007/s00344-022-10706-1spa
dc.relation.referencesLobo, L. L. B., De Andrade Da Silva, M. S. R., Castellane, T. C. L., Carvalho, R. F., & Rigobelo, E. C. (2022). Effect of Indole-3-Acetic Acid on Tomato Plant Growth. Microorganisms, 10(11), 2212. https://doi.org/10.3390/microorganisms10112212spa
dc.relation.referencesLozano-González, J. M., Valverde, S., Montoya, M., Martín, M., Rivilla, R., Lucena, J. J., & López-Rayo, S. (2023). Evaluation of Siderophores Generated by Pseudomonas Bacteria and Their Possible Application as Fe Biofertilizers. Plants (Basel, Switzerland), 12(23), 4054. https://doi.org/10.3390/plants12234054spa
dc.relation.referencesMaddocks, S. E., & Oyston, P. C. F. (2008). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology, 154(12), 3609–3623. https://doi.org/10.1099/mic.0.2008/022772-0spa
dc.relation.referencesMano, Y., Nemoto, K., Suzuki, M., Seki, H., Fujii, I., & Muranaka, T. (2010). The AMI1 gene family: Indole-3-acetamide hydrolase functions in auxin biosynthesis in plants. Journal of Experimental Botany, 61(1), 25–32. https://doi.org/10.1093/jxb/erp292spa
dc.relation.referencesMashiguchi, K., Hisano, H., Takeda-Kamiya, N., Takebayashi, Y., Ariizumi, T., Gao, Y., Ezura, H., Sato, K., Zhao, Y., Hayashi, K., & Kasahara, H. (2019). Agrobacterium tumefaciens Enhances Biosynthesis of Two Distinct Auxins in the Formation of Crown Galls. Plant and Cell Physiology, 60(1), 29–37. https://doi.org/10.1093/pcp/pcy182spa
dc.relation.referencesMcClerklin, S. A., Lee, S. G., Harper, C. P., Nwumeh, R., Jez, J. M., & Kunkel, B. N. (2018). Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000. PLOS Pathogens, 14(1), e1006811. https://doi.org/10.1371/journal.ppat.1006811spa
dc.relation.referencesMitter, E. K., Tosi, M., Obregón, D., Dunfield, K. E., & Germida, J. J. (2021). Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. Frontiers in Sustainable Food Systems, 5. https://www.frontiersin.org/articles/10.3389/fsufs.2021.606815spa
dc.relation.referencesMohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, 13(3), 0–0. https://doi.org/10.4067/S0718-95162013005000051spa
dc.relation.referencesMukherjee, A., Gaurav, A. K., Singh, S., Yadav, S., Bhowmick, S., Abeysinghe, S., & Verma, J. P. (2022). The bioactive potential of phytohormones: A review. Biotechnology Reports, 35, e00748. https://doi.org/10.1016/j.btre.2022.e00748spa
dc.relation.referencesNafisi, M., Goregaoker, S., Botanga, C. J., Glawischnig, E., Olsen, C. E., Halkier, B. A., & Glazebrook, J. (2007). Arabidopsis Cytochrome P450 Monooxygenase 71A13 Catalyzes the Conversion of Indole-3-Acetaldoxime in Camalexin Synthesis. The Plant Cell, 19(6), 2039–2052. https://doi.org/10.1105/tpc.107.051383spa
dc.relation.referencesOberhansli, T., Defago, G., & Haas, D. (1991). Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: Role of tryptophan side chain 56 oxidase. Journal of General Microbiology, 137(10), 2273–2279. https://doi.org/10.1099/00221287-137-10-2273spa
dc.relation.referencesOjeda, C., Blanco, J. F., Montaña, A. C. G., Monroy, J. S., Monsalve, J. C., Poveda, D., Rojas, M. K. T., & Castro, J. S. (2021). FUNDAMENTOS EN AGROECOLOGÍA, UNA REVISIÓN EN LA BÚSQUEDA DE ALTERNATIVAS SOSTENIBLES EN CULTIVOS HORTÍCOLAS COMO RESPUESTA A LOS EFECTOS DE LA PANDEMIA POR CORONAVIRUS SARS-COV-2. CON-CIENCIA Y TÉCNICA, 5(1), Article 1.spa
dc.relation.referencesOrtiz-García, P., González Ortega-Villaizán, A., Onejeme, F. C., Müller, M., & Pollmann, S. (2023). Do Opposites Attract? Auxin-Abscisic Acid Crosstalk: New Perspectives. International Journal of Molecular Sciences, 24(4), Article 4. https://doi.org/10.3390/ijms24043090spa
dc.relation.referencesPal, G., Saxena, S., Kumar, K., Verma, A., Sahu, P. K., Pandey, A., White, J. F., & Verma, S. K. (2022). Endophytic Burkholderia: Multifunctional roles in plant growth promotion and stress tolerance. Microbiological Research, 265, 127201. https://doi.org/10.1016/j.micres.2022.127201spa
dc.relation.referencesPandit, M. A., Kumar, J., Gulati, S., Bhandari, N., Mehta, P., Katyal, R., Rawat, C. D., Mishra, V., & Kaur, J. (2022). Major Biological Control Strategies for Plant Pathogens. Pathogens, 11(2), 273. https://doi.org/10.3390/pathogens11020273spa
dc.relation.referencesPardo Díaz, S., Mazo Molina, D. C., & Rojas Tapias, D. F. (2021). Bacterias promotoras del crecimiento vegetal: Filogenia, microbioma, y perspectivas. En Bacterias promotoras de crecimiento vegetal en sistemas de agricultura sostenible. Editorial AGROSAVIA. https://doi.org/10.21930/agrosavia.analisis.7405019spa
dc.relation.referencesParthasarathy, A., Cross, P. J., Dobson, R. C. J., Adams, L. E., Savka, M. A., & Hudson, A. O. (2018). A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Frontiers in Molecular Biosciences, 5, 29. https://doi.org/10.3389/fmolb.2018.00029spa
dc.relation.referencesPatten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68(8), 3795–3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002spa
dc.relation.referencesPruesse, E., Peplies, J., & Glöckner, F. O. (2012). SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics, 28(14), 1823–1829. https://doi.org/10.1093/bioinformatics/bts252spa
dc.relation.referencesQuast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219spa
dc.relation.referencesRamírez-Melo, M., Ruíz-Flores, N., Vásquez-Murrieta, S., Rodríguez-Tovar, A., GuerreroZúñiga, A., & Rodríguez-Dorantes, A. (2013). Plant growth promotion and protecting effect to heavy metals of rhizobacteria on inoculated Lens esculenta seeds. International Journal of AgriScience, 3(5), 414–422.spa
dc.relation.referencesRatnaningsih, H. R., Noviana, Z., Dewi, T. K., Loekito, S., Wiyono, S., Gafur, A., & Antonius, S. (2023). IAA and ACC deaminase producing-bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic and biotic stresses. Heliyon, 9(6), e16306. https://doi.org/10.1016/j.heliyon.2023.e16306spa
dc.relation.referencesReséndez, A. M., Mendoza, V. G., Carrillo, J. L. R., Arroyo, J. V., & Ríos, P. C. (2018). Rizobacterias promotoras del crecimiento vegetal: Una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología, 20(1), Article 1. https://doi.org/10.15446/rev.colomb.biote.v20n1.73707spa
dc.relation.referencesRoberts, J., & Rosenfeld, H. J. (1977). Isolation, crystallization, and properties of indolyl-3- alkane alpha-hydroxylase. A novel tryptophan-metabolizing enzyme. The Journal of Biological Chemistry, 252(8), 2640–2647spa
dc.relation.referencesRojas, M. M., Rives, N., Tejera, B., Acebo, Y., & Heydrich, M. (2012). PRODUCCIÓN DE ANTISUEROS PARA LA DETECCIÓN DE ÁCIDO INDOLACÉTICO EN CULTIVOS DE BACTERIAS PROMOTORAS DEL CRECIMIENTO VEGETAL. Acta biol. Colomb, 17(2), 271–280.spa
dc.relation.referencesRojas-Rojas, F. U., López-Sánchez, D., Meza-Radilla, G., Méndez-Canarios, A., Ibarra, J. A., & Estrada-de Los Santos, P. (2019). El controvertido complejo Burkholderia cepacia, un grupo de especies promotoras del crecimiento vegetal y patógenas de plantas, animales y humanos. Revista Argentina de Microbiología, 51(1), 84–92. https://doi.org/10.1016/j.ram.2018.01.002spa
dc.relation.referencesSagar, A., Yadav, S. S., Sayyed, R. Z., Sharma, S., & Ramteke, P. W. (2022). Bacillus subtilis: A Multifarious Plant Growth Promoter, Biocontrol Agent, and Bioalleviator of Abiotic Stress. En M. T. Islam, M. Rahman, & P. Pandey (Eds.), Bacilli in Agrobiotechnology (pp. 561–580). Springer International Publishing. https://doi.org/10.1007/978-3-030-85465-2_24spa
dc.relation.referencesSaitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454spa
dc.relation.referencesSánchez-Yáñez, J. M., Alonso-Bravo, J. N., Dasgupta-Schuber, N., & Márquez-Benavides, L. (2015). Biorremediación de suelo contaminado con 55000 y 65000 de aceite residual automotriz y fitorremediación con Sorghum bicolor inoculado con Burkholderia cepacia y Penicillium chrysogenum. Journal of the Selva Andina Biosphere, 3(2), 86–94.spa
dc.relation.referencesSardar, P., & Kempken, F. (2018). Characterization of indole-3-pyruvic acid pathwaymediated biosynthesis of auxin in Neurospora crassa. PLoS ONE, 13(2), e0192293. https://doi.org/10.1371/journal.pone.0192293spa
dc.relation.referencesSavoia, D., Deplano, C., & Zucca, M. (2008). Pseudomonas aeruginosa and Burkholderia cenocepacia Infections in Patients Affected by Cystic Fibrosis: Serum Resistance and Antibody Response. Immunological Investigations, 37(1), 19–27. https://doi.org/10.1080/08820130701741775spa
dc.relation.referencesSchoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., Leipe, D., Mcveigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J. P., Sun, L., Turner, S., & Karsch-Mizrachi, I. (2020). NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database, 2020, baaa062. https://doi.org/10.1093/database/baaa062spa
dc.relation.referencesSchroth, M. N., Hildebrand, D. C., & Panopoulos, N. (2006). Phytopathogenic Pseudomonads and Related Plant-Associated Pseudomonads. En M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes (pp. 714–740). Springer New York. https://doi.org/10.1007/0-387-30746-X_23spa
dc.relation.referencesSekimoto, H., Seo, M., Kawakami, N., Komano, T., Desloire, S., Liotenberg, S., MarionPoll, A., Caboche, M., Kamiya, Y., & Koshiba, T. (1998). Molecular Cloning and 59 Characterization of Aldehyde Oxidases in Arabidopsis thaliana. Plant and Cell Physiology, 39(4), 433–442. https://doi.org/10.1093/oxfordjournals.pcp.a029387spa
dc.relation.referencesShao, J., Li, S., Zhang, N., Cui, X., Zhou, X., Zhang, G., Shen, Q., & Zhang, R. (2015). Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microbial Cell Factories, 14(1), 130. https://doi.org/10.1186/s12934-015-0323-4spa
dc.relation.referencesShao, J., Li, Y., Li, Z., Xu, Z., Xun, W., Zhang, N., Feng, H., Miao, Y., Shen, Q., & Zhang, R. (2021). Participating mechanism of a major contributing gene ysnE for auxin biosynthesis in Bacillus amyloliquefaciens SQR9. Journal of Basic Microbiology, 61(6), 569–575. https://doi.org/10.1002/jobm.202100098spa
dc.relation.referencesShitut, S., Ahsendorf, T., Pande, S., Egbert, M., & Kost, C. (2019). Nanotube‐mediated cross‐ feeding couples the metabolism of interacting bacterial cells. Environmental Microbiology, 21(4), 1306–1320. https://doi.org/10.1111/1462-2920.14539spa
dc.relation.referencesSingh, M., Singh, D., Gupta, A., Pandey, K. D., Singh, P. K., & Kumar, A. (2019). Chapter Three - Plant Growth Promoting Rhizobacteria: Application in Biofertilizers and Biocontrol of Phytopathogens. En A. K. Singh, A. Kumar, & P. K. Singh (Eds.), PGPR Amelioration in Sustainable Agriculture (pp. 41–66). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-815879-1.00003-3spa
dc.relation.referencesSiow, Y. L., & Dakshinamurti, K. (1990). Neuronal DOPA Decarboxylase. Annals of the New York Academy of Sciences, 585(1 Vitamin B6), 173–188. https://doi.org/10.1111/j.1749-6632.1990.tb28052.xspa
dc.relation.referencesSpaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31(4), 425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.xspa
dc.relation.referencesStecher, G., Tamura, K., & Kumar, S. (2020). Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Molecular Biology and Evolution, 37(4), 1237–1239. https://doi.org/10.1093/molbev/msz312spa
dc.relation.referencesSun, H., Zhang, J., Liu, W., E, W., Wang, X., Li, H., Cui, Y., Zhao, D., Liu, K., Du, B., Ding, Y., & Wang, C. (2022). Identification and combinatorial engineering of indole-3- acetic acid synthetic pathways in Paenibacillus polymyxa. Biotechnology for Biofuels and Bioproducts, 15(1), 81. https://doi.org/10.1186/s13068-022-02181-3spa
dc.relation.referencesSun, X., Xu, Z., Xie, J., Hesselberg-Thomsen, V., Tan, T., Zheng, D., Strube, M. L., Dragoš, A., Shen, Q., Zhang, R., & Kovács, Á. T. (2022). Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. The ISME Journal, 16(3), 774–787. https://doi.org/10.1038/s41396- 021-01125-3spa
dc.relation.referencesTagele, S. B., Kim, S. W., Lee, H. G., Kim, H. S., & Lee, Y. S. (2018). Effectiveness of multitrait Burkholderia contaminans KNU17BI1 in growth promotion and management of banded leaf and sheath blight in maize seedling. Microbiological Research, 214, 8– 18. https://doi.org/10.1016/j.micres.2018.05.004spa
dc.relation.referencesTakai, K., Ushiro, H., Noda, Y., Narumiya, S., & Tokuyama, T. (1977). Crystalline hemoprotein from Pseudomonas that catalyzes oxidation of side chain of tryptophan and other indole derivatives. The Journal of Biological Chemistry, 252(8), 2648– 2656.spa
dc.relation.referencesTamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 11030–11035. https://doi.org/10.1073/pnas.0404206101spa
dc.relation.referencesTamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120spa
dc.relation.referencesTang, J., Li, Y., Zhang, L., Mu, J., Jiang, Y., Fu, H., Zhang, Y., Cui, H., Yu, X., & Ye, Z. (2023). Biosynthetic Pathways and Functions of Indole-3-Acetic Acid in Microorganisms. Microorganisms, 11(8), 2077. https://doi.org/10.3390/microorganisms11082077spa
dc.relation.referencesTariq, A., & Ahmed, A. (2022). Auxins-Interkingdom Signaling Molecules. En C. Hano (Ed.), Plant Hormones—Recent Advances, New Perspectives and Applications (p. Ch. 1). IntechOpen. https://doi.org/10.5772/intechopen.102599spa
dc.relation.referencesTaylor, B. L., & Zhulin, I. B. (1999). PAS domains: Internal sensors of oxygen, redox potential, and light. Microbiology and Molecular Biology Reviews: MMBR, 63(2), 479–506. https://doi.org/10.1128/MMBR.63.2.479-506.1999spa
dc.relation.referencesTerán Pérez, W. (2023). CARACTERIZACIÓN DE LA DIVERSIDAD GENÉTICA Y FUNCIONAL DE MICROORGANISMOS DEL SISTEMA SUELO-RAÍZ EN SISTEMAS PRODUCTIVOS DE LA ZONA CAFETERA CENTRAL DE COLOMBIA (1.1) [dataset]. SiB Colombia. https://ipt.biodiversidad.co/permisos/resource?r=213_bacteriasuelosejecafetero_201 90401&v=1.1spa
dc.relation.referencesVassileva, M., Mocali, S., Canfora, L., Malusá, E., García Del Moral, L. F., Martos, V., FlorPeregrin, E., & Vassilev, N. (2022). Safety Level of Microorganism-Bearing Products Applied in Soil-Plant Systems. Frontiers in Plant Science, 13, 862875. https://doi.org/10.3389/fpls.2022.862875spa
dc.relation.referencesWagi, S., & Ahmed, A. (2019). Bacillus spp.: Potent microfactories of bacterial IAA. PeerJ, 7, e7258. https://doi.org/10.7717/peerj.7258spa
dc.relation.referencesWang, Z., Lu, K., Liu, X., Zhu, Y., & Liu, C. (2023). Comparative Functional Genome Analysis Reveals the Habitat Adaptation and Biocontrol Characteristics of Plant Growth-Promoting Bacteria in NCBI Databases. Microbiology Spectrum, 11(3), e05007-22. https://doi.org/10.1128/spectrum.05007-22spa
dc.relation.referencesWei Wang, M. S. (2009). Phylogenetic relationships between Bacillus species and related genera inferred from 16s rDNA sequences. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 40(3), 505–521. https://doi.org/10.1590/S1517-838220090003000013spa
dc.relation.referencesWeijers, D., Nemhauser, J., & Yang, Z. (2018). Auxin: Small molecule, big impact. Journal of Experimental Botany, 69(2), 133–136. https://doi.org/10.1093/jxb/erx463spa
dc.relation.referencesWilliams, K. P., Gillespie, J. J., Sobral, B. W. S., Nordberg, E. K., Snyder, E. E., Shallom, J. M., & Dickerman, A. W. (2010). Phylogeny of Gammaproteobacteria. Journal of Bacteriology, 192(9), 2305–2314. https://doi.org/10.1128/JB.01480-09spa
dc.relation.referencesWu, X., Monchy, S., Taghavi, S., Zhu, W., Ramos, J., & Van Der Lelie, D. (2011). Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiology Reviews, 35(2), 299–323. https://doi.org/10.1111/j.1574-6976.2010.00249.xspa
dc.relation.referencesYabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T., & Arakawa, M. (1992). Proposal of Burkholderia gen. Nov. And Transfer of Seven 62 Species of the Genus Pseudomonas Homology Group II to the New Genus, with the Type Species Burkholderia cepacia (Palleroni and Holmes 1981) comb. Nov. Microbiology and Immunology, 36(12), 1251–1275. https://doi.org/10.1111/j.1348- 0421.1992.tb02129.xspa
dc.relation.referencesYamada, T., Palm, C. J., Brooks, B., & Kosuge, T. (1985). Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proceedings of the National Academy of Sciences, 82(19), 6522–6526. https://doi.org/10.1073/pnas.82.19.6522spa
dc.relation.referencesYu, Z., Zhang, F., Friml, J., & Ding, Z. (2022). Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology, 64(2), 371–392. https://doi.org/10.1111/jipb.13225spa
dc.relation.referencesZaman, N. R., Chowdhury, U. F., Reza, R. N., Chowdhury, F. T., Sarker, M., Hossain, M. M., Akbor, Md. A., Amin, A., Islam, M. R., & Khan, H. (2021). Plant growth promoting endophyte Burkholderia contaminans NZ antagonizes phytopathogen Macrophomina phaseolina through melanin synthesis and pyrrolnitrin inhibition. PLOS ONE, 16(9), e0257863. https://doi.org/10.1371/journal.pone.0257863spa
dc.relation.referencesZhang, B.-X., Li, P.-S., Wang, Y.-Y., Wang, J.-J., Liu, X.-L., Wang, X.-Y., & Hu, X.-M. (2021). Characterization and synthesis of indole-3-acetic acid in plant growth promoting Enterobacter sp. RSC Advances, 11(50), 31601–31607. https://doi.org/10.1039/d1ra05659jspa
dc.relation.referencesZhang, H., Yang, Q., Zhao, J., Chen, J., Wang, S., Ma, M., Liu, H., Zhang, Q., Zhao, H., Zhou, D., Wang, X., Gao, J., & Zhao, H. (2022). Metabolites from Bacillus subtilis J-15 Affect Seedling Growth of Arabidopsis thaliana and Cotton Plants. Plants, 11(23), Article 23. https://doi.org/10.3390/plants11233205spa
dc.relation.referencesZhang, M., Gao, C., Xu, L., Niu, H., Liu, Q., Huang, Y., Lv, G., Yang, H., & Li, M. (2022). Melatonin and Indole-3-Acetic Acid Synergistically Regulate Plant Growth and Stress Resistance. Cells, 11(20), 3250. https://doi.org/10.3390/cells11203250spa
dc.relation.referencesZhang, P., Jin, T., Kumar Sahu, S., Xu, J., Shi, Q., Liu, H., & Wang, Y. (2019). The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis. Molecules, 24(7), 1411. https://doi.org/10.3390/molecules24071411spa
dc.relation.referencesZhang, Q., Gong, M., Xu, X., Li, H., & Deng, W. (2022). Roles of Auxin in the Growth, Development, and Stress Tolerance of Horticultural Plants. Cells, 11(17), 2761. https://doi.org/10.3390/cells11172761spa
dc.relation.referencesZhao, Y. (2012). Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-Acetic Acid in Plants. Molecular Plant, 5(2), 334–338. https://doi.org/10.1093/mp/ssr104spa
dc.relation.referencesZiegler, S. F., White, F. F., & Nester, E. W. (1987). Genes Involved in Indole Acetic Acid Production in Plant Pathogenic Bacteria. En E. L. Civerolo, A. Collmer, R. E. Davis, & A. G. Gillaspie (Eds.), Plant Pathogenic Bacteria (Vol. 4, pp. 18–25). Springer Netherlands. https://doi.org/10.1007/978-94-009-3555-6_3spa
dc.relation.referencesZuther, K., Mayser, P., Hettwer, U., Wu, W., Spiteller, P., Kindler, B. L. J., Karlovsky, P., Basse, C. W., & Schirawski, J. (2008). The tryptophan aminotransferase Tam1 catalyses the single biosynthetic step for tryptophan-dependent pigment synthesis in Ustilago maydis. Molecular Microbiology, 68(1), 152–172. https://doi.org/10.1111/j.1365-2958.2008.06144.xspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/spa
dc.subjectÁcidos indolacéticosspa
dc.subjectGenesspa
dc.subjectEnzimasspa
dc.subjectMetabolismospa
dc.subjectBPCV (bacterias promotoras de crecimiento vegetal)spa
dc.subject.subjectenglishIndoleacetic Acidsspa
dc.subject.subjectenglishGenesspa
dc.subject.subjectenglishEnzymesspa
dc.subject.subjectenglishMetabolismspa
dc.subject.subjectenglishPGPB (Plant Growth Promoting Bacteria)spa
dc.titleAnálisis in silico de genes vinculados a la biosíntesis de ácido indolacético (AIA) asociados a aislamientos bacterianos de suelos agrícolas del Eje Cafeterospa
dc.title.alternativeIn silico analysis of genes linked to indoleacetic acid (IAA) biosynthesis associated with bacterial isolates from agricultural soils of the Eje Cafetero.spa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis de Pregradospa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Tesis AIA - Jaramillo-Zárate.pdf
Tamaño:
6.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Formato autorización biblioteca.pdf
Tamaño:
273.41 KB
Formato:
Adobe Portable Document Format
Descripción:
AUTORIZACIÓN PARA LA PUBLICACIÓN DIGITAL DE OBRAS EN EL REPOSITORIO INSTITUCIONAL DE LA UNIVERSIDAD LIBRE

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones